
2.6 — Long Run Industry Equilibrium

ECON 306 • Microeconomic Analysis • Spring 2021 Ryan Safner

Assistant Professor of Economics

- safner@hood.edu
- ryansafner/microS21
- microS21.classes.ryansafner.com

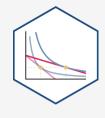
Outline

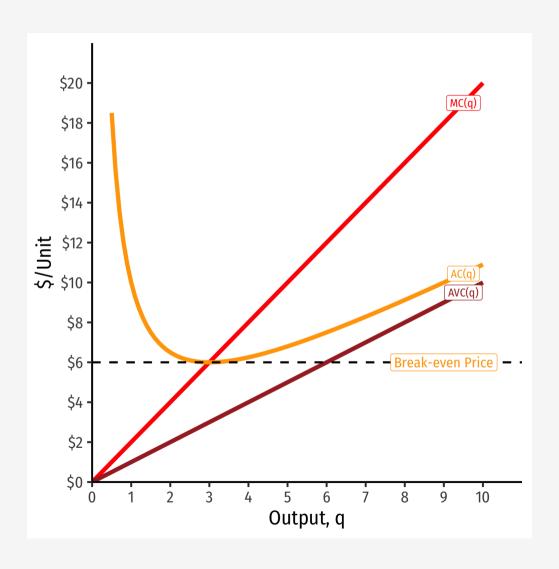
Firm's Long Run Supply Decisions

Market Entry and Exit

<u>Deriving the Industry Supply Curve</u>

Zero Economic Profits & Economic Rents


Supply Functions


Price Elasticity of Supply

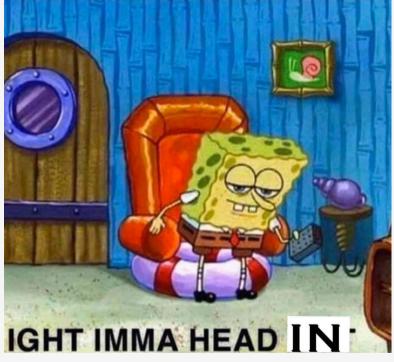
Firm's Long Run Supply Decisions

Firm Decisions in the Long Run I

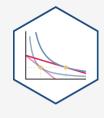
- $AC(q)_{min}$ at a market price of \$6
- At \$6, the firm earns "normal economic profits" (of 0)
- At any market price below \$6.00, firm earns losses
 - Short Run: firm shuts down if p < AVC(q)
- At any market price above \$6.00, firm earns "supernormal profits" (>0)

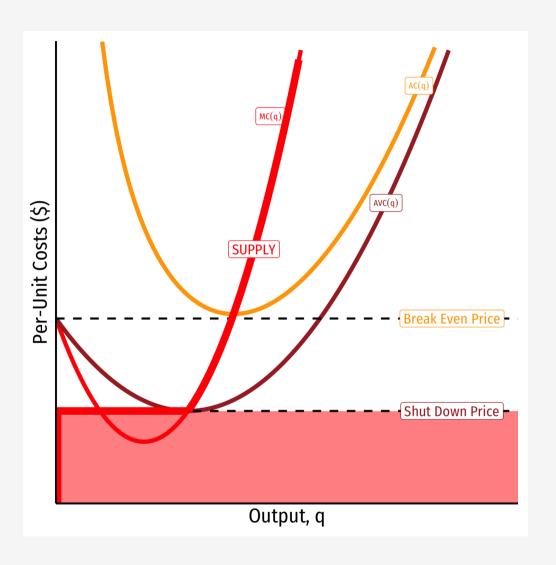
• Short run: firms that shut down $(q^*=0) \text{ stuck in market, incur fixed }$ costs $\pi=-f$

- Short run: firms that shut down $(q^*=0) \text{ stuck in market, incur fixed } \cos \pi = -f$
- Long run: firms earning losses ($\pi < 0$) can exit the market and earn $\pi = 0$
 - No more fixed costs, firms can sell/abandon f at $q^* = 0$



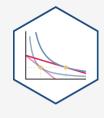
- Short run: firms that shut down $(q^*=0) \text{ stuck in market, incur fixed } \cos \pi = -f$
- Long run: firms earning losses $(\pi < 0)$ can exit the market and earn $\pi = 0$
 - No more fixed costs, firms can sell/abandon f at $q^* = 0$
- Entrepreneurs not *currently* in market can **enter** and produce, if entry would earn them $\pi > 0$

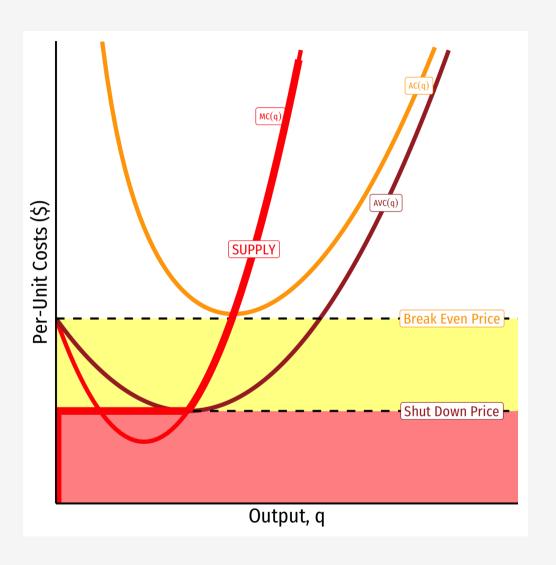




Perfectly competitive firms when economic profit > 0

Firm's Long Run Supply: Visualizing

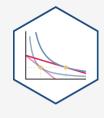


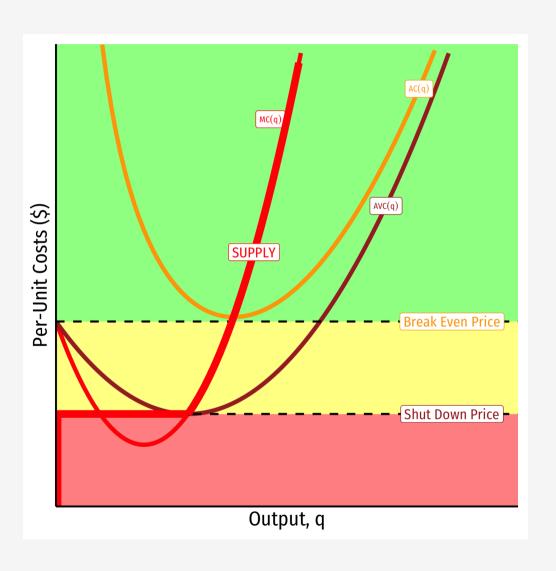


When p < AVC

- Profits are *negative*
- Short run: shut down production
 - \circ Firm loses more π by producing than by not producing
- Long run: firms in industry **exit** the industry
 - No new firms will enter this industry

Firm's Long Run Supply: Visualizing





When AVC

- Profits are *negative*
- Short run: continue production
 - \circ Firm loses $less \pi$ by producing than by not producing
- Long run: firms in industry **exit** the industry
 - No new firms will enter this industry

Firm's Long Run Supply: Visualizing

When AC < p

- Profits are *positive*
- Short run: continue production
 - Firm earning profits
- Long run: firms in industry **stay** in industry
 - **New** firms will **enter** this industry

Production Rules, Updated:

- 1. Choose q^* such that MR(q) = MC(q)
- 2. Profit $\pi = q[p AC(q)]$
- 3. Shut down in *short run* if p < AVC(q)
- **4. Exit in** long runif p < AC(q)

Market Entry and Exit

Exit, Entry, and Long Run Industry Equilibrium I

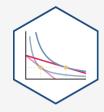
- Now we must combine optimizing individual firms with market-wide adjustment to equilibrium
- Since $\pi = [p AC(q)]q$, in the **long** run, profit-seeking firms will:

Exit, Entry, and Long Run Industry Equilibrium I

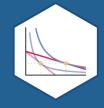
- Now we must combine optimizing individual firms with market-wide adjustment to equilibrium
- Since $\pi = [p AC(q)]q$, in the **long** run, profit-seeking firms will:
 - \circ Enter markets where p > AC(q)

Exit, Entry, and Long Run Industry Equilibrium I

- Now we must combine optimizing individual firms with market-wide adjustment to equilibrium
- Since $\pi = [p AC(q)]q$, in the **long** run, profit-seeking firms will:
 - \circ Enter markets where p > AC(q)
 - \circ Exit markets where p < AC(q)

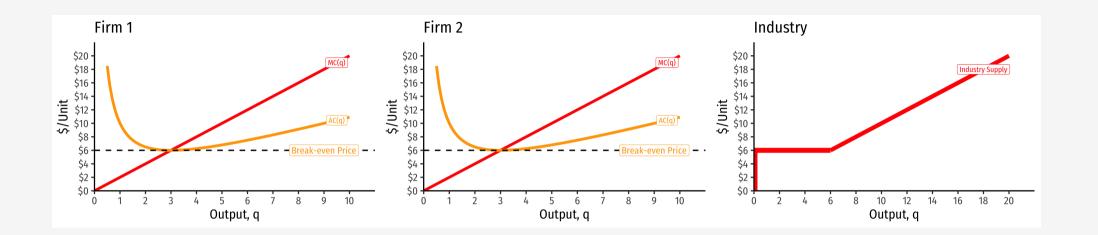

Exit, Entry, and Long Run Industry Equilibrium II

• Long-run equilibrium: entry and exit ceases when p = AC(q) for all firms, implying normal economic profits of $\pi = 0$

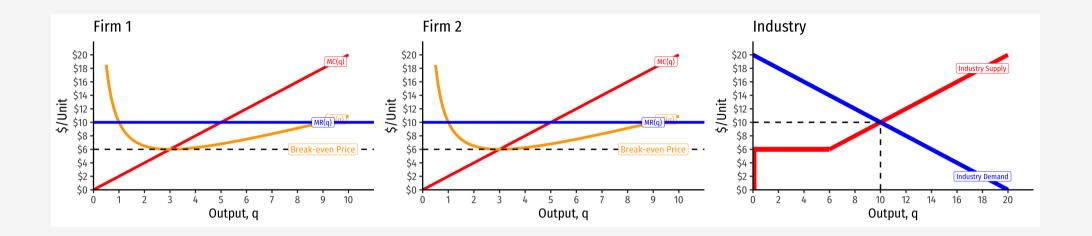


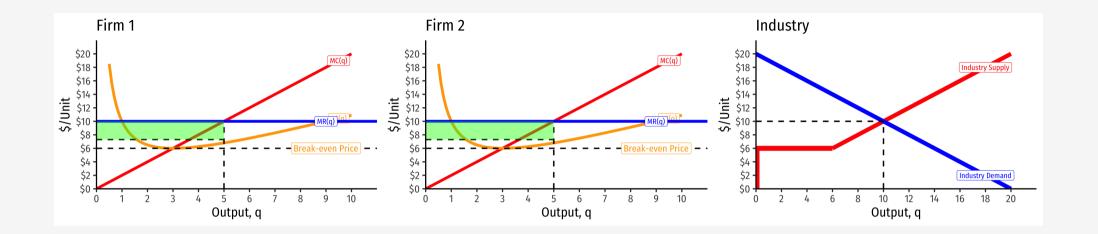
Exit, Entry, and Long Run Industry Equilibrium II

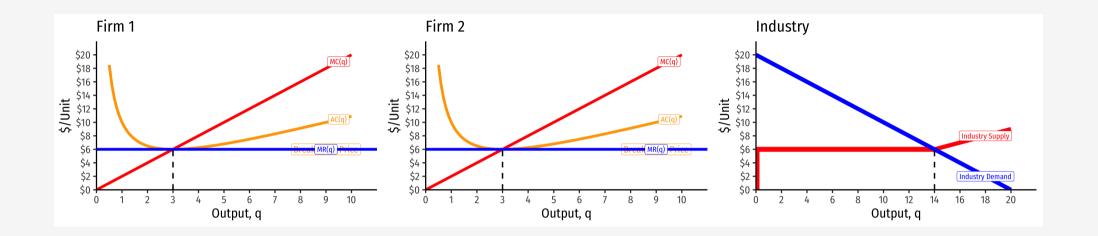
- Long-run equilibrium: entry and exit ceases when p = AC(q) for all firms, implying normal economic profits of $\pi = 0$
- Zero Economic Profits Theorem: long run economic profits for all firms in a competitive industry are 0
- Firms must earn an *accounting* profit to stay in business

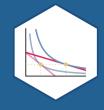

Deriving the Industry Supply Curve

The Industry Supply Curve


- Industry supply curve: horizontal sum of all individual firms' supply curves
 - \circ recall: (MC(q) curve above $AVC_{min})$ (shut down price)
- To keep it simple on the following slides:
 - \circ assume no fixed costs, so AC(q) = AVC(q)
 - \circ then industry supply curve is sum of individual MC(q) curves above $AC(q)_{min}$

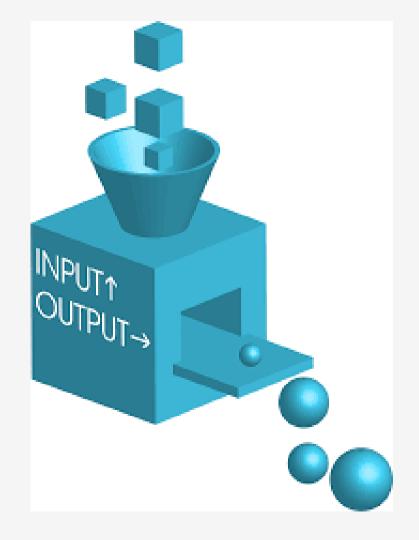

- Industry supply curve is the horizontal sum of all individual firm's supply curves
 - Which are each firm's marginal cost curve above its breakeven price

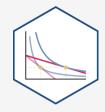

• Industry demand curve (where equal to supply) sets market price, demand for firms



- **Short Run**: each firm is earning **profits** p > AC(q)
- **Long run**: induces entry by firm 3, firm 4, \cdots , firm n
- Long run industry equilibrium:

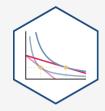
- **Short Run**: each firm is earning **profits** p > AC(q)
- **Long run**: induces entry by firm 3, firm 4, \cdots , firm n
- Long run industry equilibrium: $p = AC(q)_{min}$, $\pi = 0$ at p = \$6; supply becomes more **elastic**


Zero Economic Profits & Economic Rents

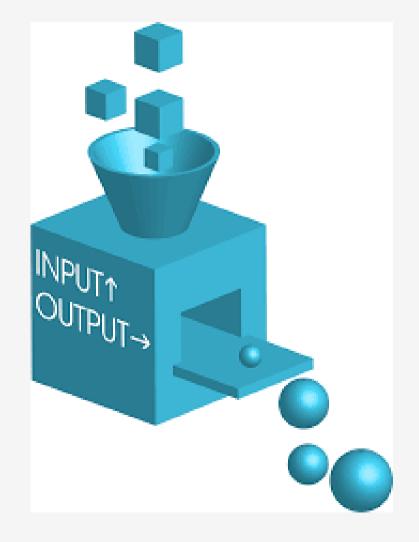


 Recall, we've essentially defined a firm as a completely replicable recipe (production function) of resources

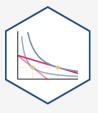
$$q = f(L, K)$$


• "Any idiot" can enter market, buy required (L,K) at prices (w,r), produce q^* at market price p and earn the market rate of π

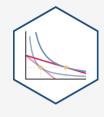
- Zero long run economic profit ≠ industry disappears, just stops growing
- Less attractive to entrepreneurs & start ups to enter than other, more profitable industries
- These are mature industries (again, often commodities), the backbone of the economy, just not sexy!

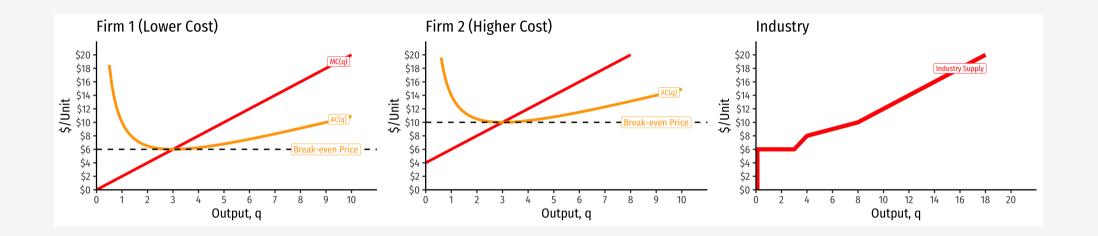


- All factors being paid their market price
 - i.e. their opportunity cost what that they could earn elsewhere in economy
- Firms earning normal market rate of return
 - No excess rewards (economic profits)
 to attract new resources into the
 industry, nor losses to bleed
 resources out of industry

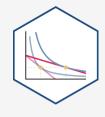


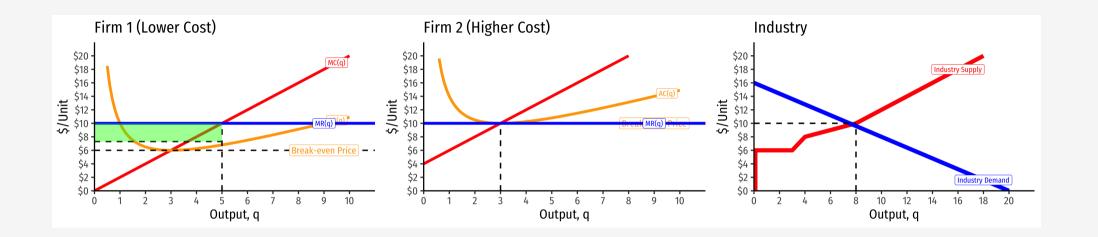
- But we've so far been imagining a market where every firm is *identical*, just a recipe "any idiot" can copy
- What about if firms have *different* technologies or costs?


Industry Supply Curves (Different Firms) I



- Firms have **different technologies/costs** due to relative differences in:
 - Managerial talent
 - Worker talent
 - Location
 - First-mover advantage
 - Technological secrets/IP
 - License/permit access
 - Political connections
 - Lobbying
- Let's derive industry supply curve again, and see if this may affact profits


Industry Supply Curves (Different Firms) II



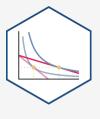
- Industry supply curve is the horizontal sum of all individual firm's supply curves
 - Which are each firm's marginal cost curve above its breakeven price

Industry Supply Curves (Different Firms) II

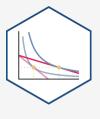
- Industry demand curve (where equal to supply) sets market price, demand for firms
- Long run industry equilibrium: $p = AC(q)_{min}$, $\pi = 0$ for marginal (highest cost) firm (Firm 2)
- Firm 1 (lower cost) appears to be earning **profits**...

Economic Rents and Zero Economic Profits I

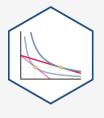
- With differences between firms, long-run equilibrium $p = AC(q)_{min}$ of the marginal (highest-cost) firm
 - If p > AC(q) for that firm, would induce *more* entry into industry!


Economic Rents and Zero Economic Profits I

- "Inframarginal" (lower-cost) firms earn economic rents
 - returns **higher** than their opportunity cost (what is needed to bring them into *this* industry)
- Economic rents arise from relative differences between firms
 - actually using *different* inputs!

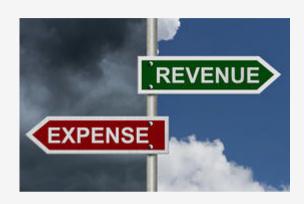

Economic Rents and Zero Economic Profits III

- Some factors are relatively scarce in the whole economy
 - (talent, location, secrets, IP, licenses, being first, political favoritism)
- **Inframarginal** firms that use these scarce factors gain an *advantage*
- It would seem these firms earn profits, as they have loewr costs...
 - ...But what will happen to the prices for the scarce factors over time?


Economic Rents and Zero Economic Profits IV

- Rival firms willing to pay for rentgenerating factor to gain advantage
- Competition over acquiring the scarce factors push up their prices
 - i.e. costs to firms of using the factor!
- Rents are included in the opportunity cost (price) for inputs over long run
 - Must pay a factor enough to keep it out of other uses

Economic Rents and Zero Economic Profits V



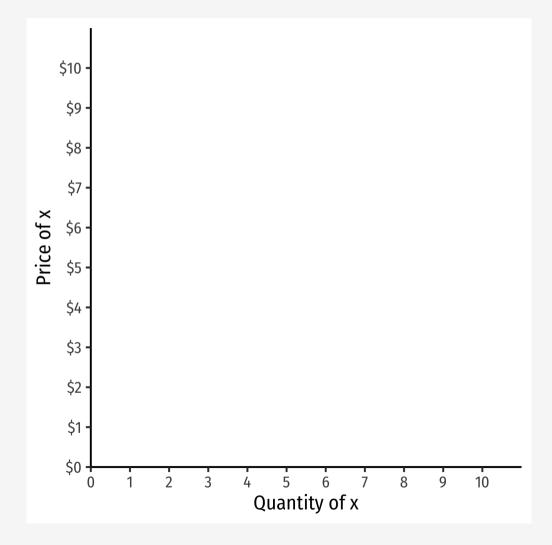
- Economic rents \neq economic profits!
 - Rents actually *reduce* profits!
- Firm does not earn the rents, they raise firm's costs and squeeze out profits!
- Scarce factor owners (workers, landowners, inventors, etc) earn the rents as higher income for their scarce services (wages, rents, interest, royalties, etc).


Recall: Accounting vs. Economic Point of View

- Recall "economic point of view":
- Producing your product pulls scarce resources out of other productive uses in the economy
- Profits attract resources: pulled out of other (less valuable) uses
- Losses repel resources: pulled away to other (more valuable) uses
- **Zero profits** \Longrightarrow resources stay where they are
 - Optimal social use of resources!

Supply Functions

Supply Function



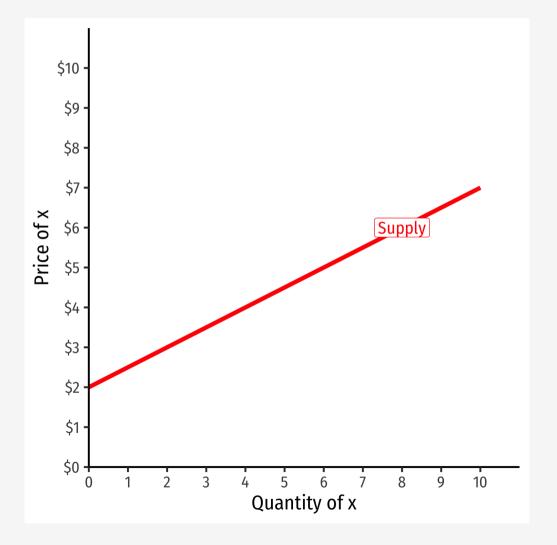
• Supply function relates quantity to price

Example:

$$q = 2p - 4$$

• Not graphable (wrong axes)!

Inverse Supply Function

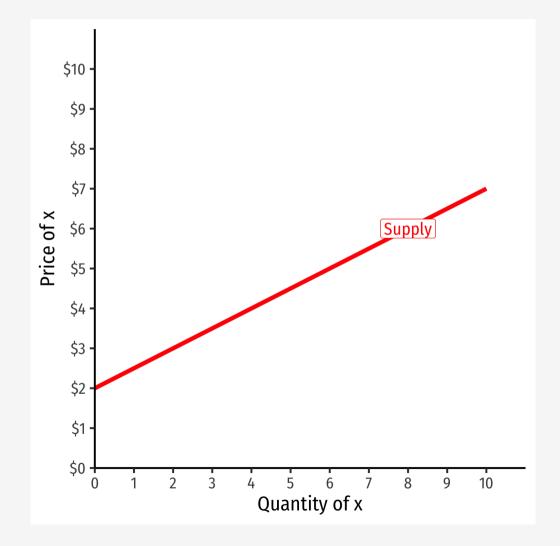


- Inverse supply function relates price to quantity
 - \circ Take supply function, solve for p

Example:

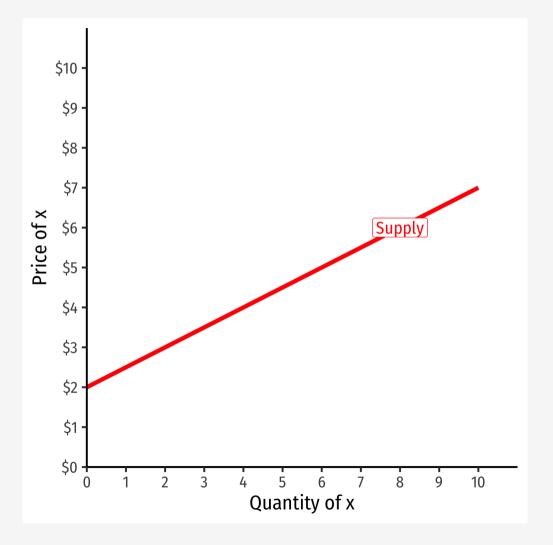
$$p = 2 + 0.5q$$

• Graphable (price on vertical axis)!


Inverse Supply Function

Example:

$$p = 2 + 0.5q$$


- Slope: 0.5
- Vertical intercept called the "Choke price": price where $q_S=0$ (\$2), just low enough to discourage *any* sales

Inverse Supply Function

- Read two ways:
- Horizontally: at any given price, how many units firm wants to sell
- Vertically: at any given quantity, the minimum willingness to accept (WTA) for that quantity

Price Elasiticity of Supply

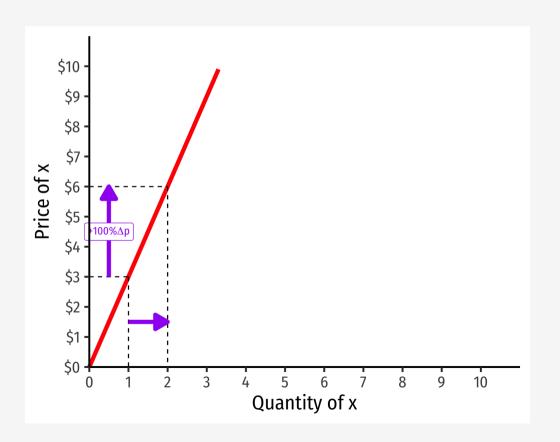
Price Elasticity of Supply

 Price elasticity of supply measures how much (in %) quantity supplied changes in response to a (1%) change in price

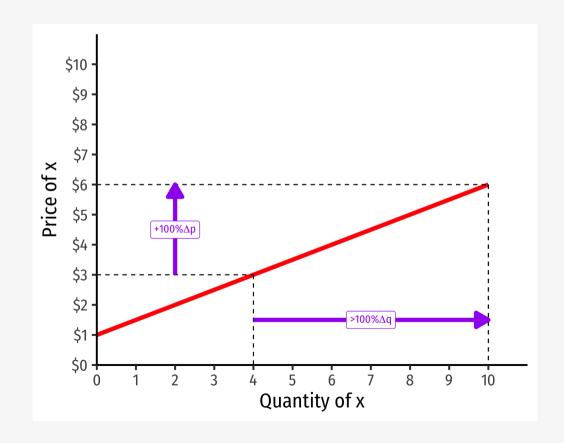
$$\epsilon_{q_S,p} = \frac{\% \Delta q_S}{\% \Delta p}$$

Price Elasticity of Supply: Elastic vs. Inelastic

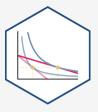
$$\epsilon_{q_S,p} = \frac{\% \Delta q_S}{\% \Delta p}$$


	"Elastic"	"Unit Elastic"	"Inelastic"
Intuitively:	Large response	Proportionate response	Little response
Mathematically:	$\epsilon_{q_s,p} > 1$	$\epsilon_{q_s,p}=1$	$\epsilon_{q_s,p} < 1$
	Numerator > Denominator	Numerator = Denominator	Numerator < Denominator
A 1% change in p	More than 1% change in q_S	1% change in q_S	Less than 1% change in q_S

Visualizing Price Elasticity of Supply



An identical 100% price increase on an:


"Inelastic" Supply Curve

"Elastic" Supply Curve

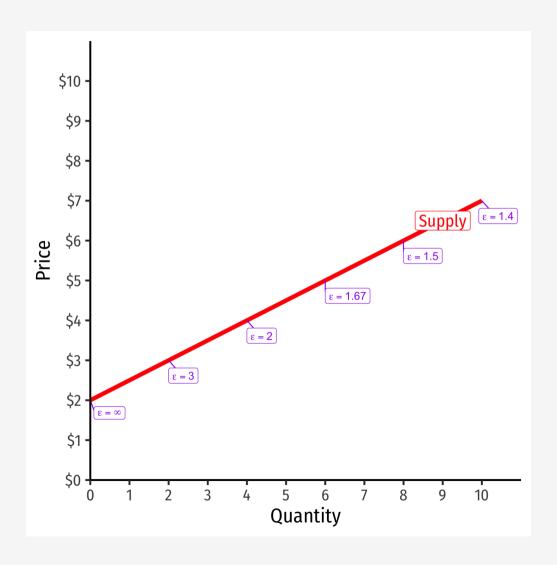
Price Elasticity of Supply Formula

$$\epsilon_{q,p} = \frac{1}{\text{slope}} \times \frac{p}{q}$$

- First term is the inverse of the slope of the inverse supply curve (that we graph)!
- To find the elasticity at any point, we need 3 things:
 - 1. The price
 - 2. The associated quantity supplied
 - 3. The slope of the (inverse) supply curve

Example




Example: The supply of bicycle rentals in a small town is given by:

$$q_S = 10p - 200$$

- 1. Find the inverse supply function.
- 2. What is the price elasticity of supply at a price of \$25.00?
- 3. What is the price elasticity of supply at a price of \$50.00?

Price Elasticity of Supply Changes Along the Curve

$$\epsilon_{q,p} = \frac{1}{\text{slope}} \times \frac{\mathbf{p}}{\mathbf{q}}$$

- Elasticity ≠ slope (but they are related)!
- Elasticity changes along the supply curve
- Often gets less elastic as ↑ price (↑ quantity)
 - Harder to supply more

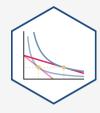
Determinants of Price Elasticity of Supply I

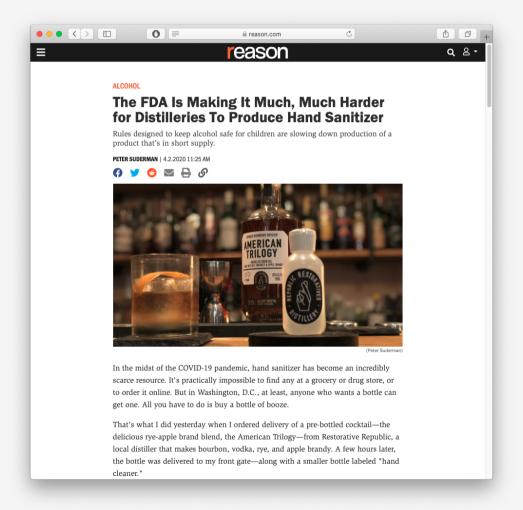
What determines how responsive your selling behavior is to a price change?

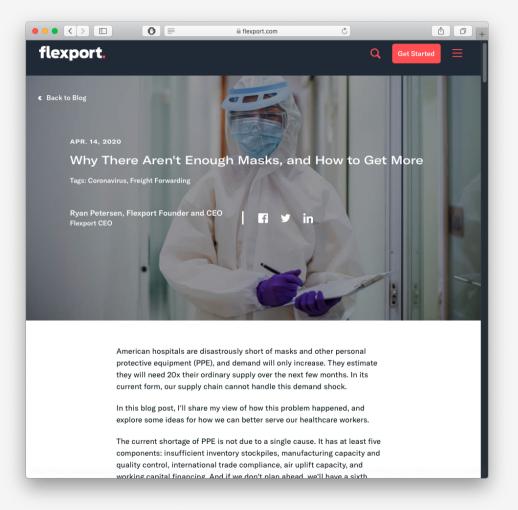
- The faster (slower) costs increase with output
 - ⇒ less (more) elastic supply
 - Mining for natural resources vs. automated manufacturing
- Smaller (larger) share of market for inputs
 ⇒ more (less) elastic
 - Will your suppliers raise the price much if you buy more?
 - How much competition is there in your input markets?

Determinants of Price Elasticity of Supply II

What determines how responsive your selling behavior is to a price change?


- More (less) time to adjust to price
 changes more (less) elastic
 - Supply of oil today vs. oil in 10 years




Price Elasticity of Supply: Examples


Price Elasticity of Supply: Examples

Price Elasticity of Supply: Examples

