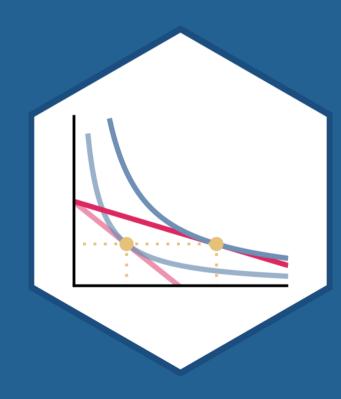
2.2 — Short Run and Long Run

ECON 306 • Microeconomic Analysis • Spring 2021 Ryan Safner

Assistant Professor of Economics

- safner@hood.edu
- ryansafner/microS21
- microS21.classes.ryansafner.com



Outline

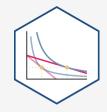
Production in the Short Run

The Firm's Problem: Long Run

Isoquants and MRTS

Isocost Lines

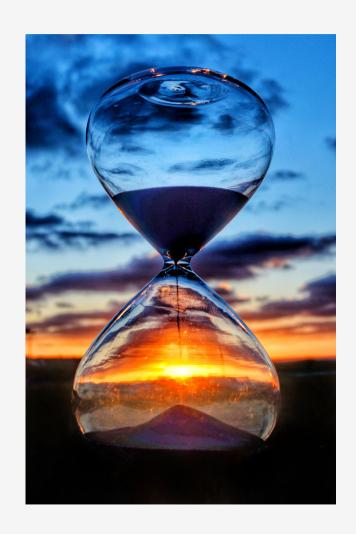
The "Runs" of Production



- "Time"-frame usefully divided between short vs. long run analysis
- Short run: at least one factor of production is fixed (too costly to change)

$$q = f(\bar{k}, l)$$

- Assume capital is fixed (i.e. number of factories, storefronts, etc)
- Short-run decisions only about using labor



The "Runs" of Production

- "Time"-frame usefully divided between short vs. long run analysis
- Long run: all factors of production are variable (can be changed)

$$q = f(k, l)$$

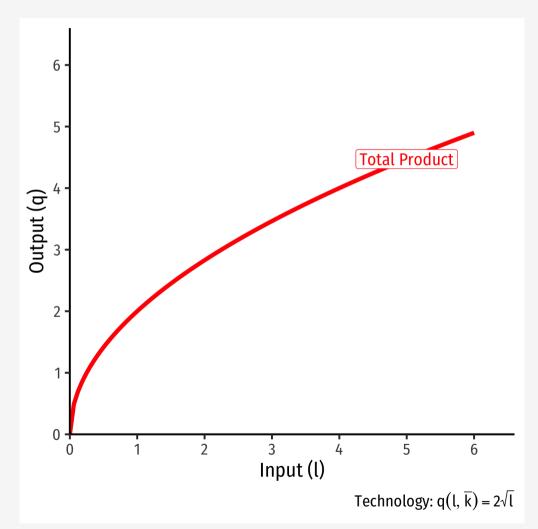
Production in the Short Run

Production in the Short Run: Example

Example: Consider a firm with the production function

$$q = k^{0.5} l^{0.5}$$

- Suppose in the short run, the firm has 4 units of capital.
- 1. Derive the short run production function.
- 2. What is the total product (output) that can be made with 4 workers?
- 3. What is the total product (output) that can be made with 5 workers?



Marginal Products

- The marginal product of an input is the additional output produced by one more unit of that input (holding all other inputs constant)
- Like marginal utility
- Similar to marginal utilities, I will give you the marginal product equations

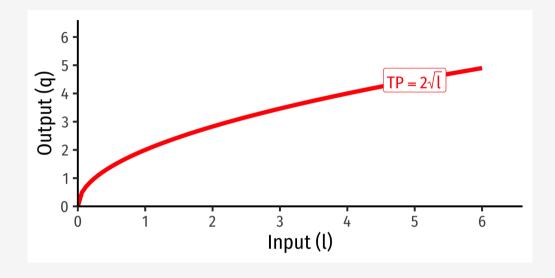


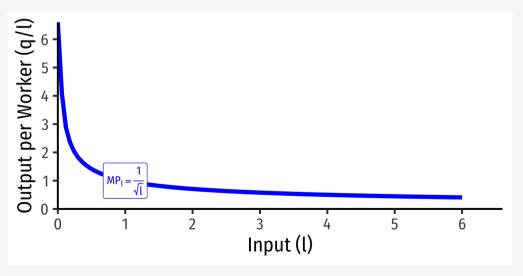
Marginal Product of Labor

Marginal product of labor (MP_l):
 additional output produced by adding
 one more unit of labor (holding k
 constant)

$$MP_l = \frac{\Delta q}{\Delta l}$$

- MP_l is slope of TP at each value of l!
- Note: via calculus: $\frac{\partial q}{\partial l}$



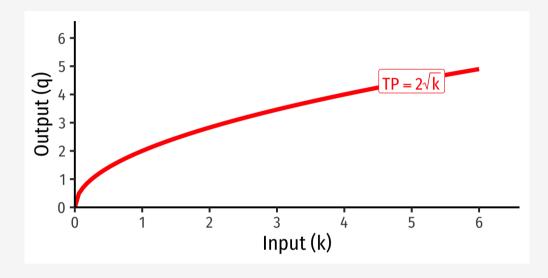


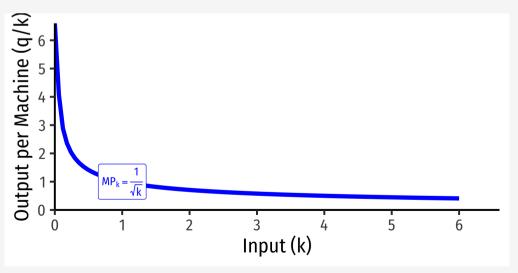
Marginal Product of Capital

Marginal product of capital (MP_k):
 additional output produced by adding
 one more unit of capital (holding *l* constant)

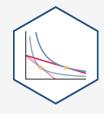
$$MP_k = \frac{\Delta q}{\Delta k}$$

- MP_k is slope of TP at each value of k!
- Note: via calculus: $\frac{\partial q}{\partial k}$
- Note we often don't consider capital in the short run!

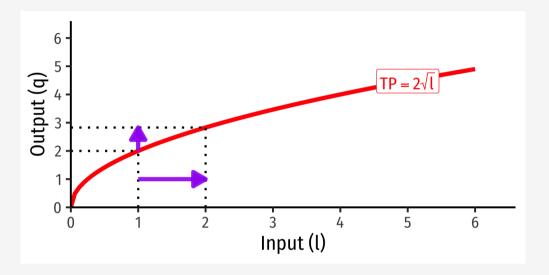


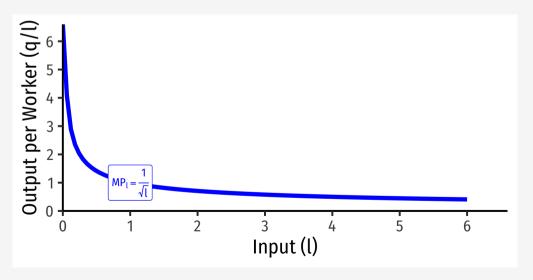


Diminishing Returns

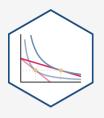


- Law of Diminishing Returns: adding more
 of one factor of production holding all
 others constant will result in
 successively lower increases in output
- In order to increase output, firm will need to increase all factors!

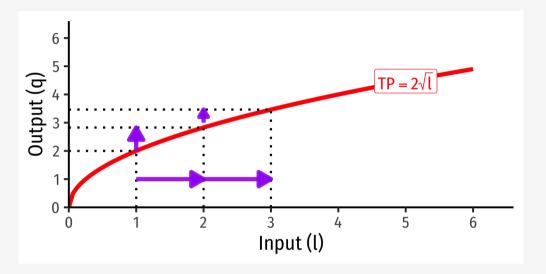


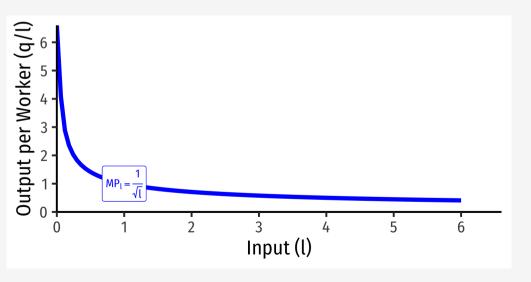


Diminishing Returns



- Law of Diminishing Returns: adding more
 of one factor of production holding all
 others constant will result in
 successively lower increases in output
- In order to increase output, firm will need to increase all factors!





Production Functions and Marginal Product



• A quick trick to roughly † estimate MP_l

$$MP_l \approx \frac{q_2 - q_1}{l_2 - l_1}$$

l	q	MP_l
0	0.00	_
1	2.00	2.00 - 0.00 = 2.00
2	2.83	2.83 - 2.00 = 0.83
3	3.46	3.46 - 2.83 = 0.63

[†] Note these are approximate. Technically, MP_l is defined via calculus as an infinitesimal change in (1), whereas these are discrete changes.

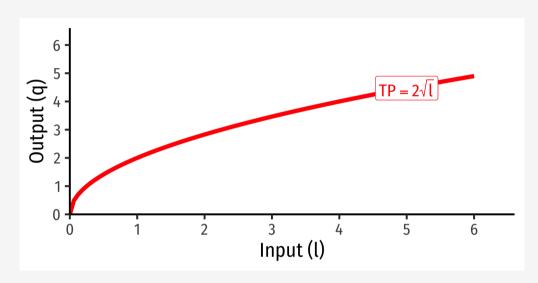
Average Product of Labor (and Capital)

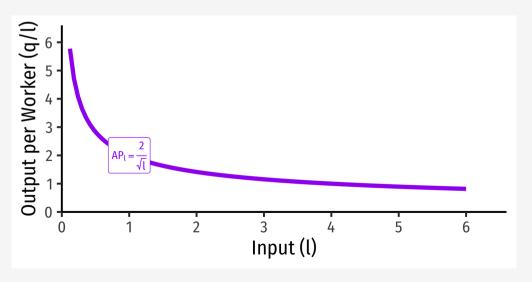
• Average product of labor (AP_l) : total output per worker

$$AP_l = \frac{q}{l}$$

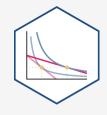
- A measure of *labor productivity*
- Average product of capital (AP_k) : total output per unit of capital

$$AP_k = \frac{q}{k}$$





Production in the Short Run: Example II



Example: Suppose a firm has the following production function:

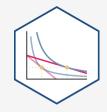
$$q = 2k + l^2$$

• Suppose in the short run, the firm has 10 units of capital.

- 1. Write an equation for the short run production function.
- 2. Calculate the total product(s), marginal product(s), and average product(s) for each of the first 5 workers.

The Firm's Problem: Long Run

The Long Run



• In the long run, *all* factors of production are variable

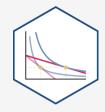
$$q = f(k, l)$$

- Can build more factories, open more storefronts, rent more space, invest in machines, etc.
- So the firm can choose both *l* and *k*

The Firm's Problem

- Based on what we've discussed, we can fill in a constrained optimization model for the firm
 - But don't write this one down just yet!
- The firm's problem is:
- 1. Choose: < inputs and output >
- 2. In order to maximize: < profits >
- 3. Subject to: < technology >
- It's actually much easier to break this into 2
 stages. See today's <u>class notes</u> page for an
 example using only one stage.

The Firm's Two Problems



1st Stage: firm's profit maximization problem:

1. Choose: < output >

2. In order to maximize: < profits >

• We'll cover this later...first we'll explore:

The Firm's Two Problems

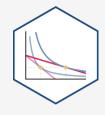
1st Stage: firm's profit maximization problem:

- 1. Choose: < output >
- 2. In order to maximize: < profits >
- We'll cover this later...first we'll explore:

2nd Stage: firm's cost minimization problem:

- 1. Choose: < inputs >
- 2. In order to *minimize*: < cost >
- 3. Subject to: < producing the optimal output >
- Minimizing costs ← maximizing profits

Long Run Production



Example:
$$q = \sqrt{lk}$$

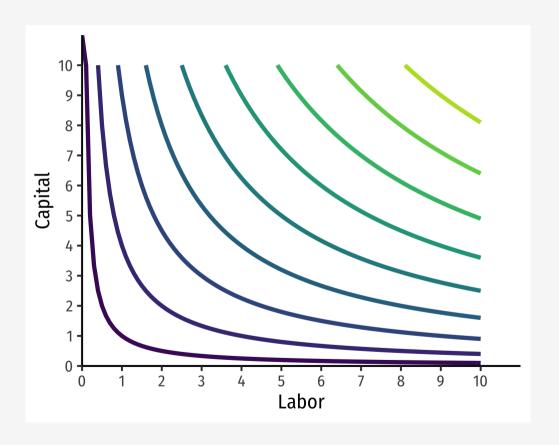
		k							
		0	1	2	3	4	5		
l	0	0.00	0.00	0.00	0.00	0.00	0.00		
	1	0.00	1.00	1.41	1.73	2.00	2.24		
	2	0.00	1.41	2.00	2.45	2.83	3.16		
	3	0.00	1.73	2.45	3.00	3.46	3.87		
	4	0.00	2.00	2.83	3.46	4.00	4.47		
	5	0.00	2.24	3.16	3.87	4.47	5.00		

- Many input-combinations yield the same output!
- So how does the firm choose the *optimal* combination??

Mapping Input-Combination Choices Graphically

3-D Production Function

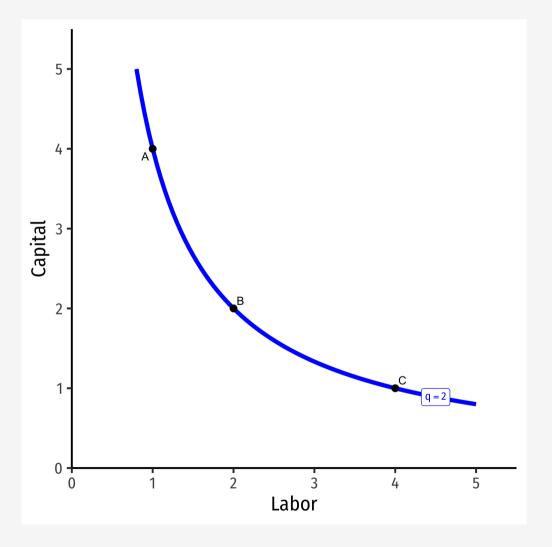
2-D Isoquant Contours



Isoquants and MRTS

Isoquant Curves

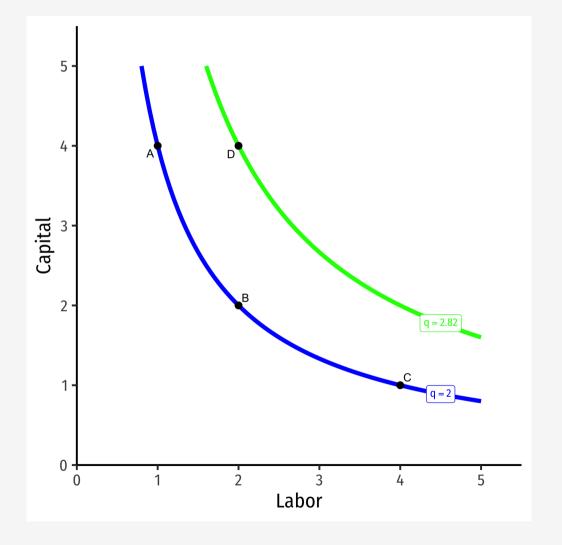
• We can draw an isoquant indicating all combinations of l and k that yield the same q



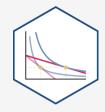
Isoquant Curves

- We can draw an ${\bf isoquant}$ indicating all combinations of l and k that yield the same q
- Combinations above curve yield more output; on a higher curve

$$\circ D > A = B = C$$



Isoquant Curves

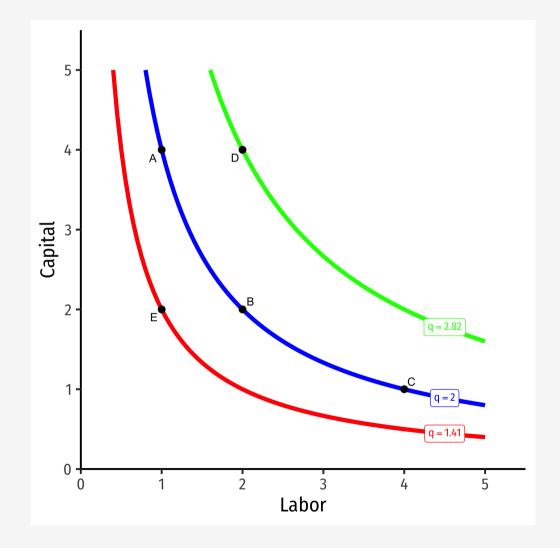


- We can draw an ${\bf isoquant}$ indicating all combinations of l and k that yield the same q
- Combinations above curve yield more output; on a higher curve

$$\circ D > A = B = C$$

 Combinations below the curve yield less output; on a lower curve

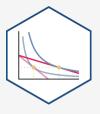
$$\circ E < A = B = C$$



Marginal Rate of *Technical* Substitution I

• If your firm uses fewer workers, how much more capital would it need to produce the same amount?

Marginal Rate of *Technical* Substitution I

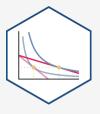


- If your firm uses fewer workers, how much more capital would it need to produce the same amount?
- Marginal Rate of Technical Substitution
 (MRTS): rate at which firm trades off one input for another to yield same output
- Firm's **relative value** of using *l* in production based on its tech:

"We could give up (MRTS) units of k to use 1 more unit of l to produce the same output."

Marginal Rate of *Technical* Substitution II

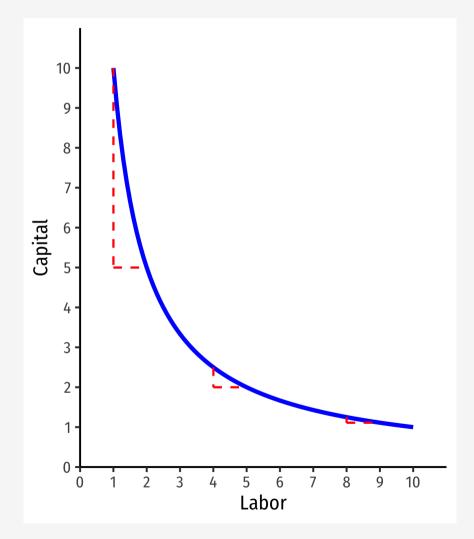
Marginal Rate of *Technical* Substitution II



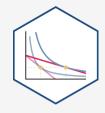
• MRTS is the slope of the isoquant

$$MRTS_{l,k} = -\frac{\Delta k}{\Delta l} = \frac{rise}{run}$$

- Amount of k given up for 1 more l
- Note: slope (MRTS) changes along the curve!
- Law of diminishing returns!



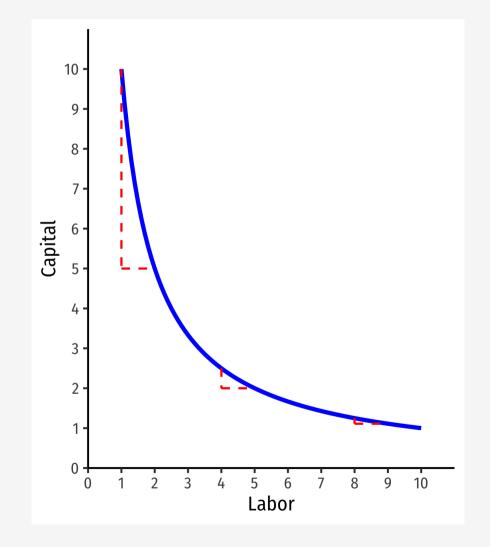
MRTS and Marginal Products



• Relationship between *MP* and *MRTS*:

$$\underbrace{\frac{\Delta k}{\Delta l}}_{MRTS} = -\frac{MP_l}{MP_k}$$

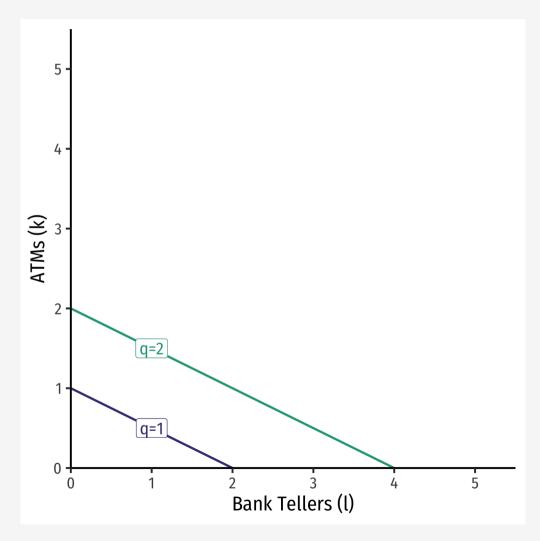
- See proof in today's class notes
- Sound familiar? 🧐



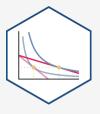
Special Case I: Perfect Substitutes

Example: Consider Bank Tellers (l) and ATMs (k)

- One ATM can do the work of 2 bank tellers
- Perfect substitutes: inputs that can be substituted at same fixed rate and yield same output
- $MRTS_{l,k} = -0.5$ (a constant!)



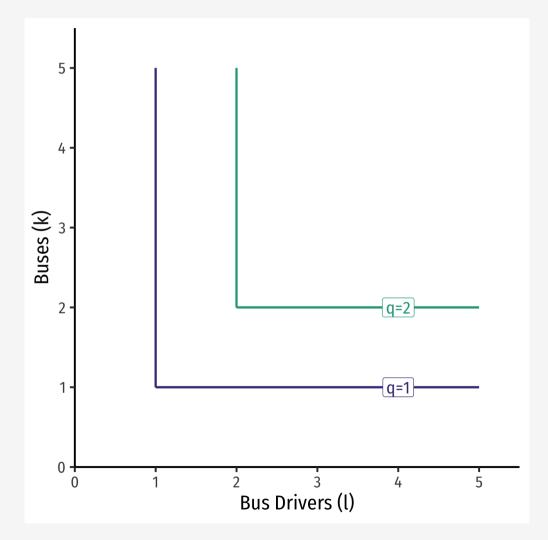
Special Case II: Perfect Complements



Example: Consider busses (k) and bus drivers (l)

- Must combine together in fixed proportions (1:1)
- Perfect complements: inputs must be used together in same fixed proportion to produce output

MRS: ?



Common Case: Cobb-Douglas Production Functions

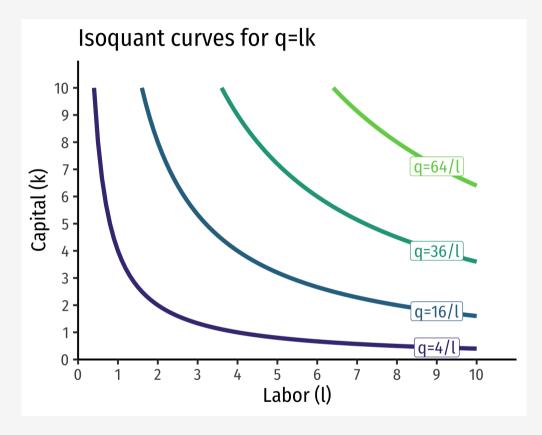
 Again: very common functional form in economics is Cobb-Douglas

$$q = A k^a l^b$$

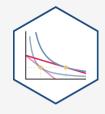
• Where a, b > 0

$$\circ$$
 often $a+b=1$

• A is total factor productivity



Practice



Example: Suppose a firm has the following production function:

$$q = 2lk$$

Where its marginal products are:

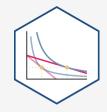
$$MP_l = 2k$$

$$MP_k = 2l$$

- 1. Put l on the horizontal axis and k on the vertical axis. Write an equation for $MRTS_{l,k}$.
- 2. Would input combinations of (1,4) and (2,2) be on the same isoquant?
- 3. Sketch a graph of the isoquant from part 2.

Isocost Lines

Isocost Lines



- If your firm can choose among many input combinations to produce q, which combinations are optimal?
- Those combination that are **cheapest**
- Denote prices of each input as:
 - w: price of labor (wage)
 - *r*: price of capital
- Let C be **total cost** of using inputs (l, k) at market prices (w, r) to produce q units of output:

$$C(w, r, q) = wl + rk$$

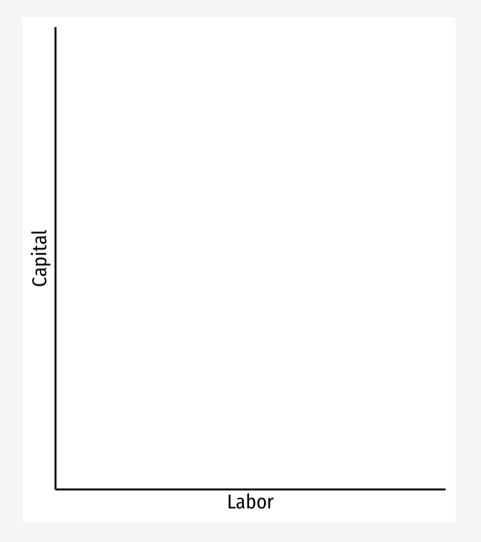


$$wl + rk = C$$

$$wl + rk = C$$

Solve for k to graph

$$k = \frac{C}{r} - \frac{w}{r}l$$

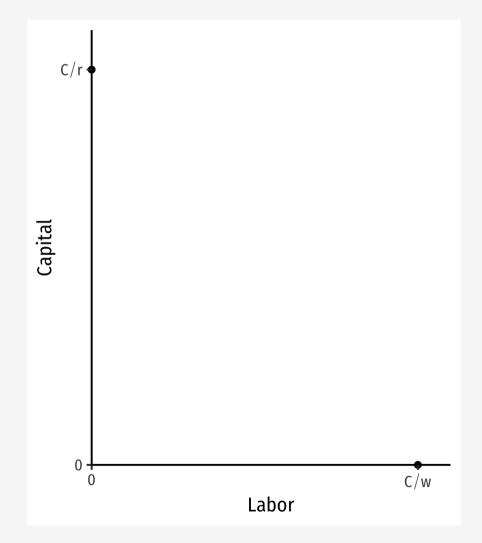


$$wl + rk = C$$

Solve for k to graph

$$k = \frac{C}{r} - \frac{w}{r}l$$

- Vertical-intercept: $\frac{C}{r}$
- Horizontal-intercept: $\frac{C}{w}$

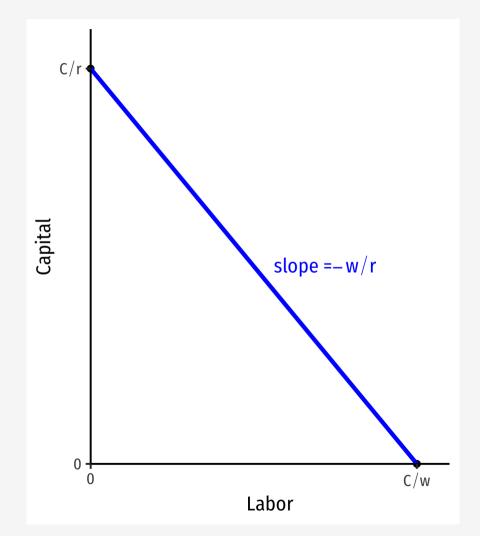


$$wl + rk = C$$

Solve for k to graph

$$k = \frac{C}{r} - \frac{w}{r}l$$

- Vertical-intercept: $\frac{C}{r}$
- Horizontal-intercept: $\frac{C}{w}$
- slope: $-\frac{w}{r}$



The Isocost Line: Example

Example: Suppose your firm has a purchasing budget of \$50. Market wages are \$5/worker-hour and the mark rental rate of capital is \$10/machine-hour. Let l be on the horizontal axis and k be on the vertical axis.

- 1. Write an equation for the isocost line (in graphable form).
- 2. Graph the isocost line.

Interpreting Isocost Line

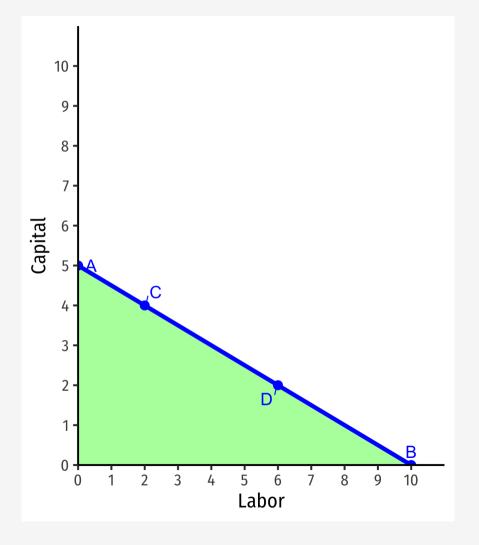
Points on the line are same total cost

$$\circ$$
 A: $\$5(0l) + \$10(5k) = \$50$

$$\circ$$
 B: \$5(10*l*) + \$10(0*k*) = \$50

$$\circ$$
 C: $\$5(2l) + \$10(4k) = \$50$

$$\circ$$
 D: $\$5(6l) + \$10(2k) = \$50$



Interpreting Isocost Line

Points on the line are same total cost

$$\circ$$
 A: $\$5(0l) + \$10(5k) = \$50$

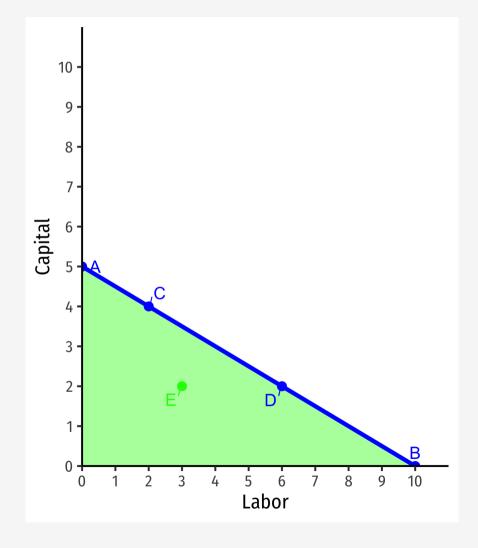
$$\circ$$
 B: $\$5(10l) + \$10(0k) = \$50$

$$\circ$$
 C: $\$5(2l) + \$10(4k) = \$50$

$$\circ$$
 D: $\$5(6l) + \$10(2k) = \$50$

 Points beneath the line are cheaper (but may produce less)

$$\circ$$
 E: \$5(3*l*) + \$10(2*k*) = \$35



Interpreting the Isocost Line

Points on the line are same total cost

$$\circ$$
 A: $\$5(0l) + \$10(5k) = \$50$

$$\circ$$
 B: \$5(10*l*) + \$10(0*k*) = \$50

$$\circ$$
 C: $\$5(2l) + \$10(4k) = \$50$

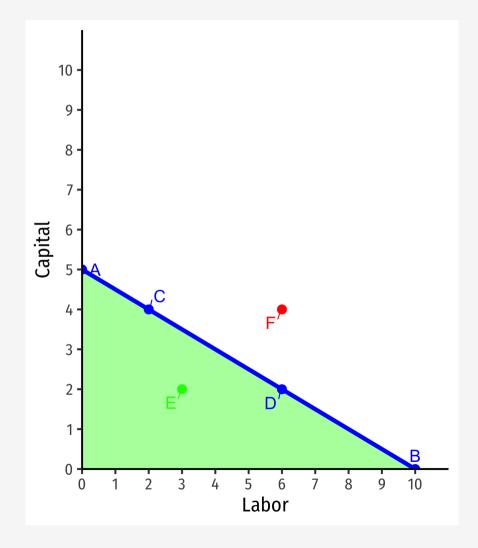
$$\circ$$
 D: \$5(6*l*) + \$10(2*k*) = \$50

 Points beneath the line are cheaper (but may produce less)

$$\circ$$
 E: $\$5(3l) + \$10(2k) = \$35$

 Points above the line are more expensive (and may produce more)

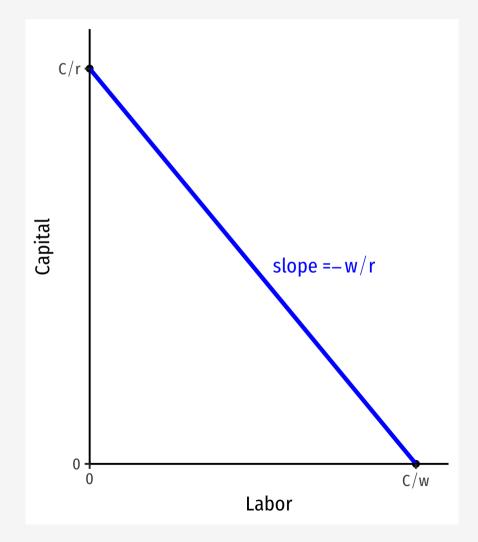
$$\circ$$
 F: \$5(6*l*) + \$10(4*k*) = \$70



Interpretting the Slope

- Slope: tradeoff between l and k at market prices
 - \circ Market "exchange rate" between l and k
- Relative price of l or the opportunity cost of l:

Hiring 1 more unit of l requires giving up $\left(\frac{w}{r}\right)$ units of k

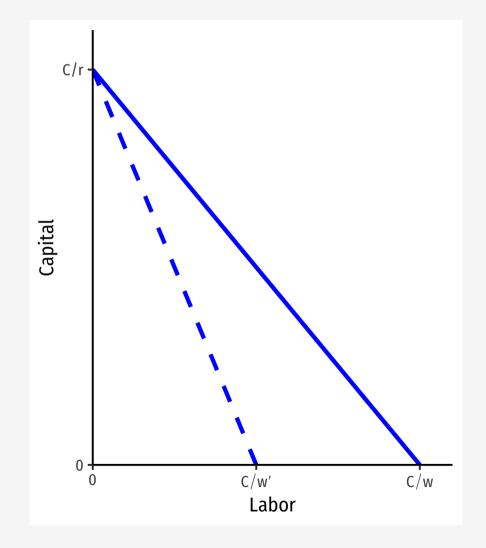


Changes in Relative Factor Prices I

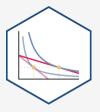
• Changes in relative factor prices: rotate the line

Example: An increase in the price of l

• Slope changes: $-\frac{w'}{r}$



Changes in Relative Factor Prices II



• Changes in relative factor prices: rotate the line

Example: An increase in the price of k

• Slope changes: $-\frac{w}{r'}$

