1.3 — Preferences

ECON 306 • Microeconomic Analysis • Spring 2021 Ryan Safner

Assistant Professor of Economics

- ✓ <u>safner@hood.edu</u>
- <u>ryansafner/microS21</u>

microS21.classes.ryansafner.com

Outline

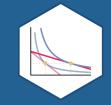
Preferences

Indifference Curves

Marginal Rate of Substitution

<u>Utility</u>

<u>Marginal Utility</u>



Preferences

• Which bundles are **preferred** over others?

Example: Between two bundles of (x, y):

$$a = (4, 12)$$
 or $b = (6, 12)$

• We will allow **three possible answers**:

• We will allow **three possible answers**:

1. a > b: (Strictly) prefer a over b

• We will allow **three possible answers**:

1. a > b: (Strictly) prefer a over b

2. $a \prec b$: (Strictly) prefer b over a

• We will allow **three possible answers**:

a ≻ b: (Strictly) prefer a over b
 a ≺ b: (Strictly) prefer b over a
 a ∼ b: Indifferent between a and b

• We will allow three possible answers:

- 1. a > b: (Strictly) prefer a over b
- 2. $a \prec b$: (Strictly) prefer b over a
- 3. $a \sim b$: Indifferent between a and b

• *Preferences* are a list of all such comparisons between all bundles

See appendix in <u>today's class page</u> for more.



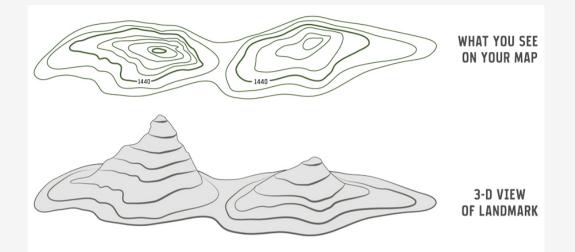
Indifference Curves

Mapping Preferences Graphically I

- For each bundle, we now have 3 pieces of information:
 - \circ amount of x
 - $\circ~\mbox{amount}~\mbox{of}~y$
 - preference compared to other bundles
- How to represent this information graphically?

Mapping Preferences Graphically II

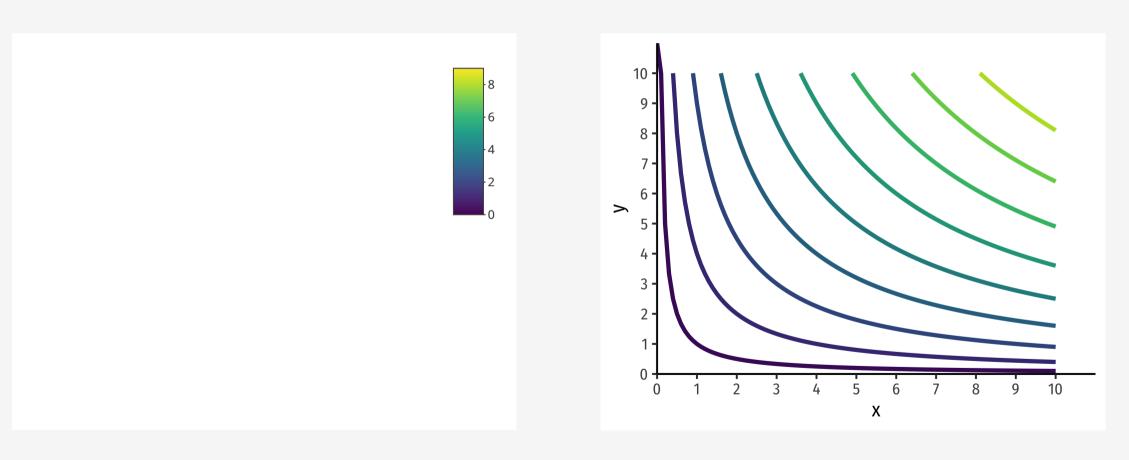
- Cartographers have the answer for us
- On a map, contour lines link areas of equal height
- We will use "indifference curves" to link bundles of equal preference



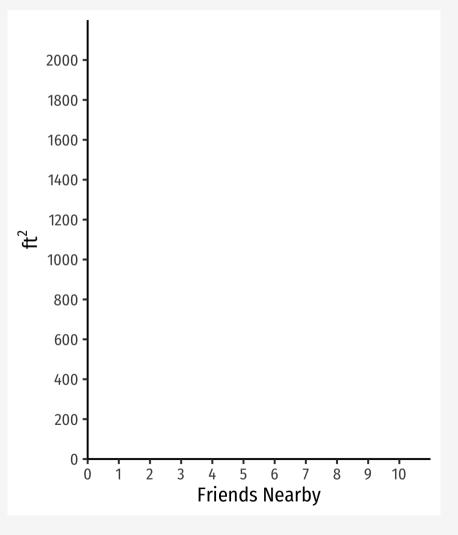
Mapping Preferences Graphically III

3-D "Mount Utility"

2-D Indifference Curve Contours

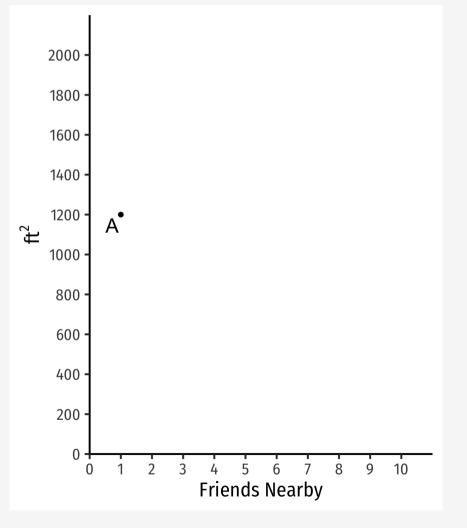


Example: Suppose you are hunting for an apartment. You value *both* the size of the apartment and the number of friends that live nearby.



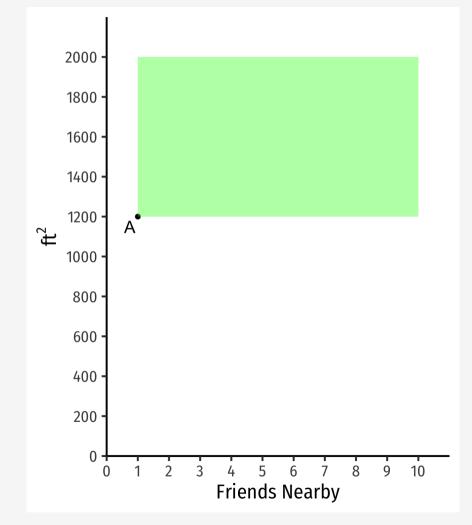
Example: Suppose you are hunting for an apartment. You value *both* the size of the apartment and the number of friends that live nearby.

• Apt. A has 1 friend nearby and is $1,200 ft^2$



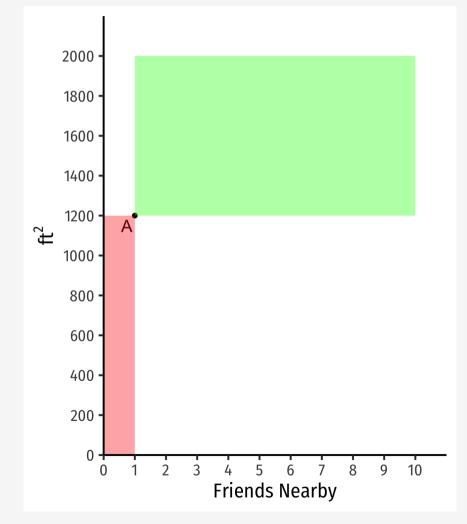
Example: Suppose you are hunting for an apartment. You value *both* the size of the apartment and the number of friends that live nearby.

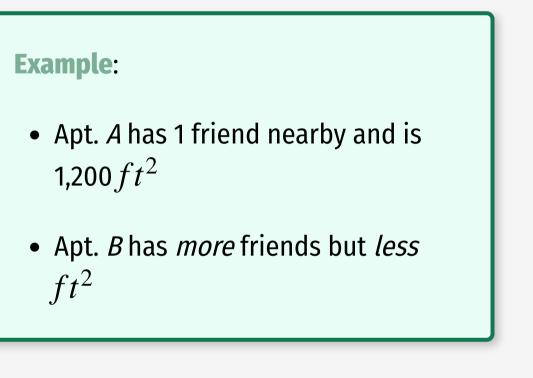
- Apt. A has 1 friend nearby and is $1,200 ft^2$
 - Apartments that are larger and/or have more friends > A

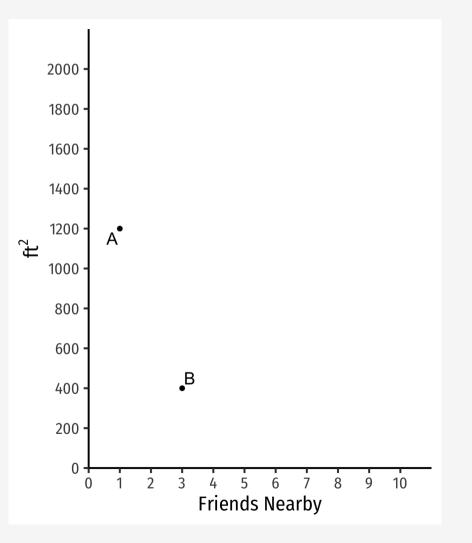


Example: Suppose you are hunting for an apartment. You value *both* the size of the apartment and the number of friends that live nearby.

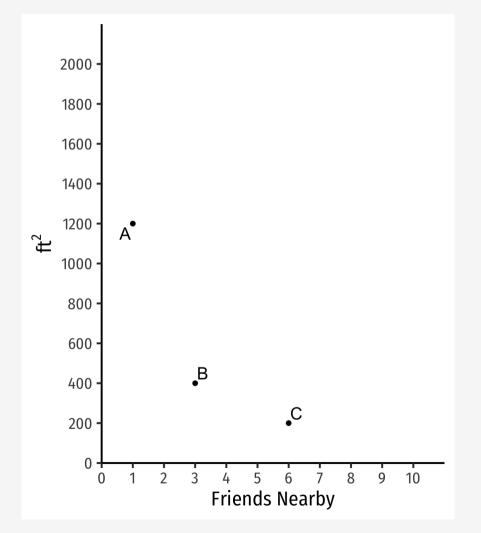
- Apt. A has 1 friend nearby and is $1,200 ft^2$
 - \circ Apartments that are larger and/or have more friends > A
 - Apartments that are smaller
 and/or have fewer friends < A



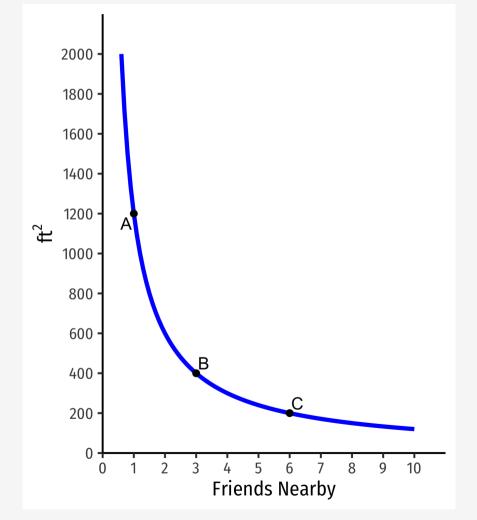




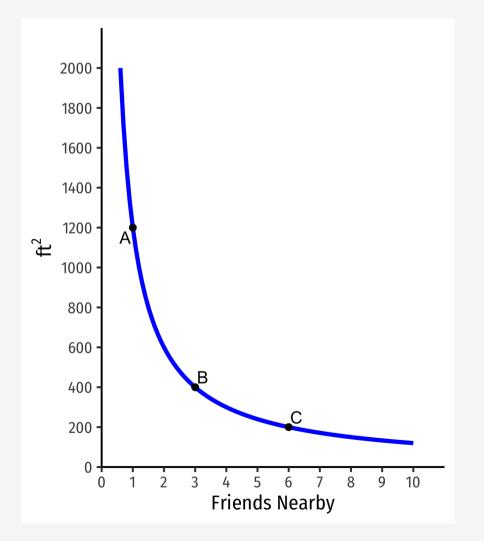
- Apt. A has 1 friend nearby and is $1,200 ft^2$
- Apt. *B* has *more* friends but *less* ft^2
- Apt. *C* has *still more* friends but *less f t*²



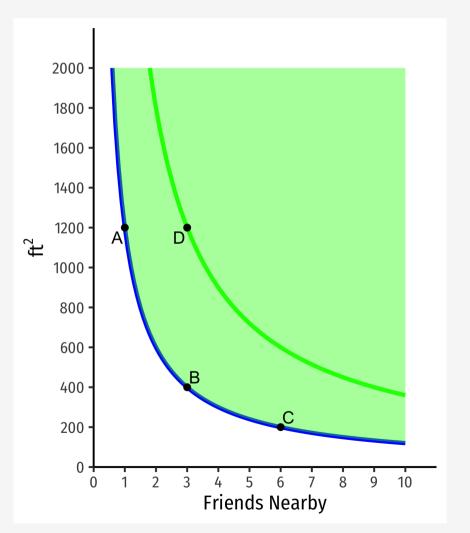
- Apt. A has 1 friend nearby and is $1,200 ft^2$
- Apt. *B* has *more* friends but *less* ft^2
- Apt. *C* has *still more* friends but *less f t*²



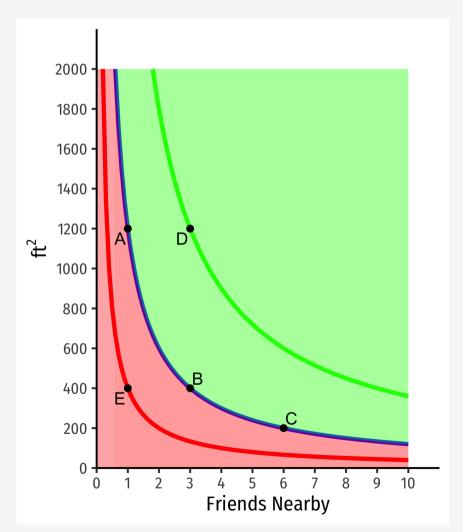
 Indifferent between all apartments on the same curve



- Indifferent between all apartments on the same curve
- Apts **above** curve are **preferred over** apts on curve
 - $\circ \ D \succ A \sim B \sim C$
 - On a higher curve

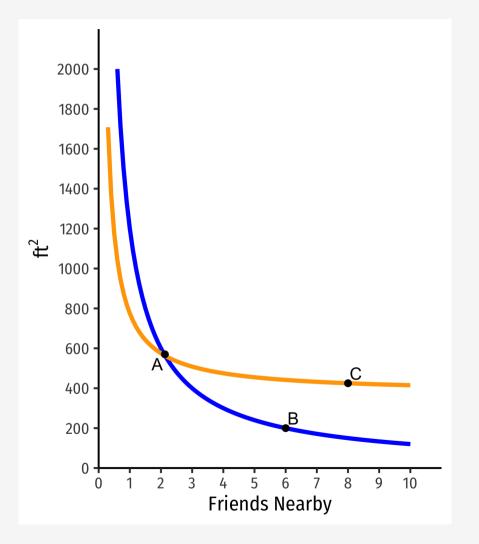


- Indifferent between all apartments on the same curve
- Apts **above** curve are **preferred over** apts on curve
 - $\circ D \succ A \sim B \sim C$
 - On a higher curve
- Apts **below** curve are **less preferred** than apts on curve
 - $\circ \ E \prec A \sim B \sim C$
 - On a **lower curve**



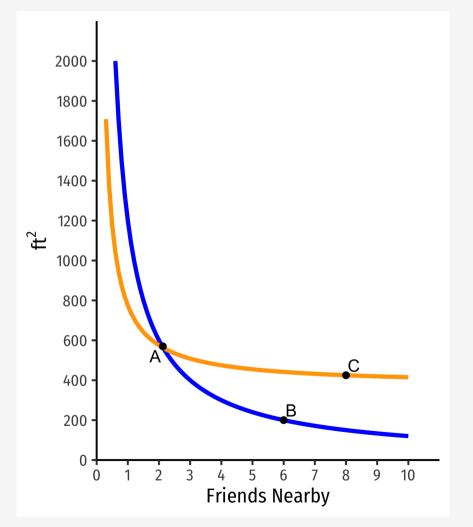
Curves Never Cross!

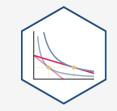
Indifference curves can never cross:
 preferences are transitive
 o If I prefer A ≻ B, and B ≻ C, I must prefer A ≻ C



Curves Never Cross!

- Indifference curves can never cross: preferences are transitive
 - If I prefer A > B, and B > C, I must prefer A > C
- Suppose two curves crossed:
 - $\circ A \sim B$
 - *B* ~ *C*
 - But C > B!
 - Doesn't make sense (not transitive)!





Marginal Rate of Substitution

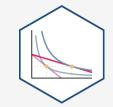
Marginal Rate of Substitution I

• If I take away one friend nearby, how many more ft^2 would you need to keep you satisfied?

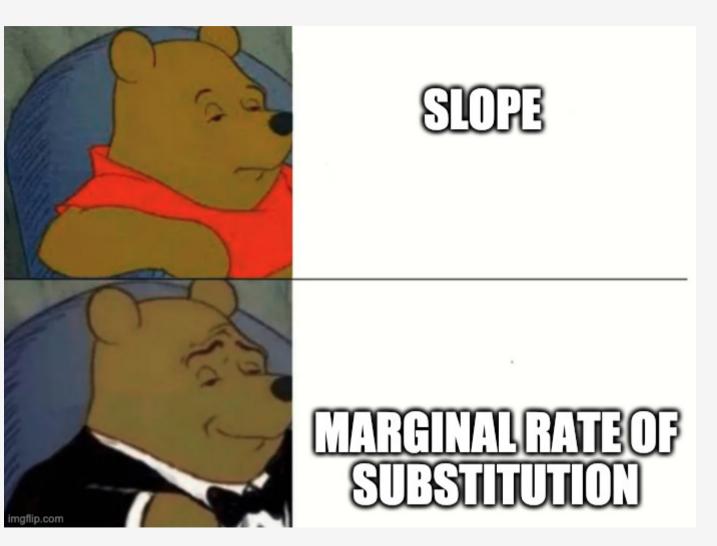
Marginal Rate of Substitution I

- If I take away one friend nearby, how many more ft^2 would you need to keep you satisfied?
- Marginal Rate of Substitution (MRS): rate at which you trade off one good for more of the other and remain *indifferent*
- Think of this as the **relative value** you place on x:

"I am willing to give up (*MRS*) units of *y* to consume 1 more unit of *x* and stay satisfied."



Marginal Rate of Substitution II



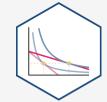
Marginal Rate of Substitution II

• MRS = slope of the indifference curve

$$MRS_{x,y} = -\frac{\Delta y}{\Delta x} = \frac{rise}{run}$$

- Amount of y given up for 1 more x
- Note: slope (MRS) changes along the curve!





MRS vs. Budget Constraint Slope

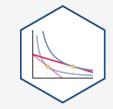
- Budget constraint (slope) measured the market's tradeoff between x and y based on market prices
- **MRS** measures your **personal** evaluation of *x* vs. *y* based on your preferences
- **Foreshadowing**: what if they are *different*? Are you truly optimizing?

Utility

So Where are the Numbers?

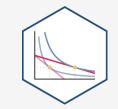
- Long ago (1890s), utility considered a real, measurable, cardinal scale[†]
- Utility thought to be lurking in people's brains
 - Could be understood from first principles: calories, water, warmth, etc
- Obvious problems

[†] "Neuroeconomics" & cognitive scientists are re-attempting a scientific approach to measure utility



Utility Functions?

- More plausibly infer people's preferences from their actions!
 - $\circ~$ "Actions speak louder than words"
- Principle of Revealed Preference: if a person chooses x over y, and both are affordable, then they must prefer $x \geq y$
- Flawless? Of course not. But extremely useful approximation!
 - People tend not to leave money on the table

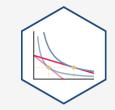


Utility Functions!

- A utility function $u(\cdot)^{\dagger}$ represents preference relations (\succ, \prec, \sim)
- Assign utility numbers to bundles, such that, for any bundles *a* and *b*:

 $a \succ b \iff u(a) > u(b)$

[†] The \cdot is a placeholder for whatever goods we are considering (e.g. x, y, burritos, lattes, etc)



Utility Functions, Pural I

Example: Imagine three alternative bundles of (x, y): a = (1, 2)b = (2, 2)c = (4, 3) • Let $u(\cdot)$ assign each bundle a utility level:

$u(\cdot)$
u(a) = 1
u(b) = 2
u(c) = 3

• Does this mean that bundle *c* is 3 times the utility of *a*?

Utility Functions, Pural II

Example: Imagine three alternative bundles of (x, y): a = (1, 2)b = (2, 2)c = (4, 3) Now consider u(·) and a 2nd function
 v(·):

$$u(\cdot)$$
 $v(\cdot)$
 $u(a) = 1$
 $v(a) = 3$
 $u(b) = 2$
 $v(b) = 5$
 $u(c) = 3$
 $v(c) = 7$

Utility Functions, Pural III

- Utility numbers have an **ordinal** meaning only, **not cardinal**
- Both are valid utility functions:[†]
 - $\circ u(c) > u(b) > u(a) \checkmark$ $\circ v(c) > v(b) > v(a) \checkmark$
 - because c > b > a
- Only the <u>ranking</u> of utility numbers matters!

[†] See the Mathematical Appendix in <u>Today's Class Page</u> for why.

Utility Functions and Indifference Curves I

- Two tools to represent preferences: indifference curves and utility functions
- Indifference curve: all equally preferred bundles ⇐⇒ same utility level
- Each indifference curve represents one level (or contour) of utility surface (function)

Utility Functions and Indifference Curves II

8

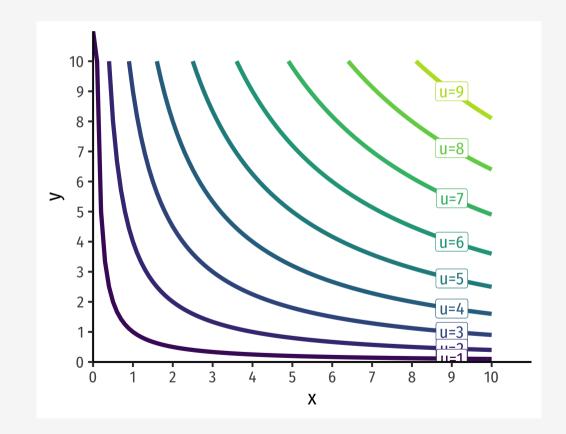
- 6

4

2

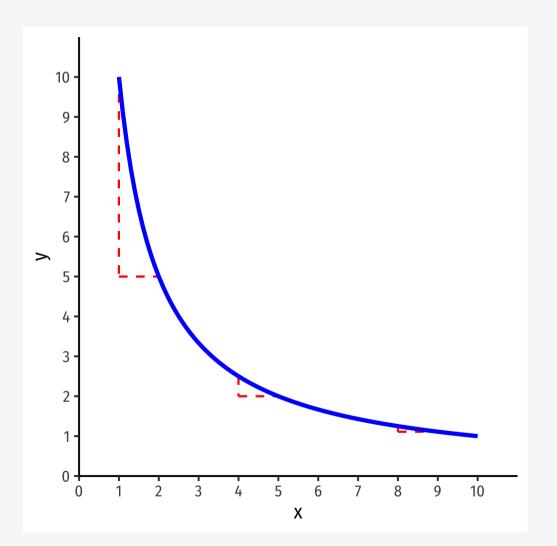
3-D Utility Function: $u(x, y) = \sqrt{xy}$

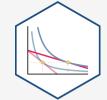
2-D Indifference Curve Contours: $y = \frac{u^2}{x}$



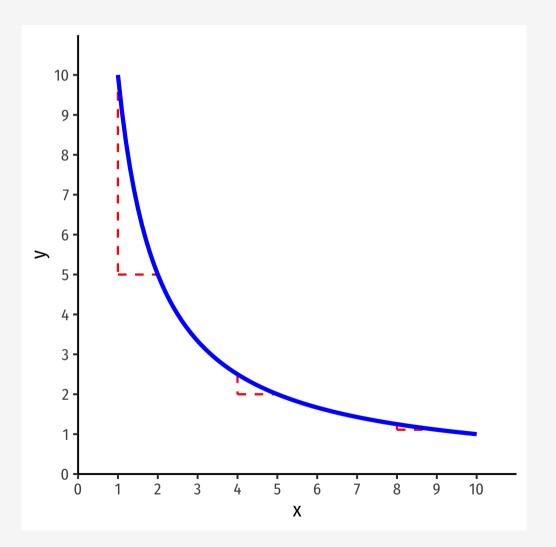
Marginal Utility

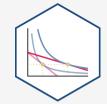
- Recall: marginal rate of substitution
 MRS_{x,y} is slope of the indifference
 curve
 - $\circ~$ Amount of y given up for 1 more x
- How to calculate MRS?
 - Recall it changes (not a straight line)!
 - We can calculate it using something from the **utility function**





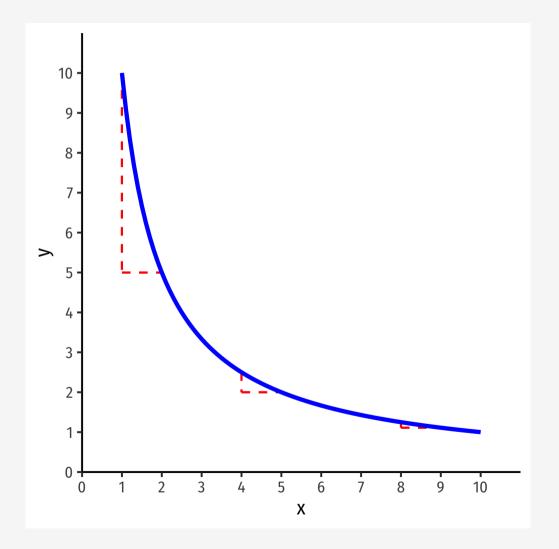
• Marginal utility: change in utility from a marginal increase in consumption





• Marginal utility: change in utility from a marginal increase in consumption

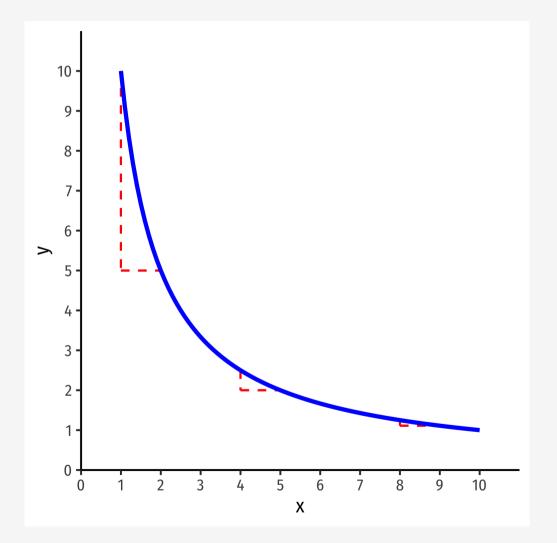
Marginal utility of *x*:
$$MU_x = \frac{\Delta u(x,y)}{\Delta x}$$

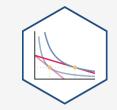


• Marginal utility: change in utility from a marginal increase in consumption

Marginal utility of *x*:
$$MU_x = \frac{\Delta u(x,y)}{\Delta x}$$

Marginal utility of *y*:
$$MU_y = \frac{\Delta u(x,y)}{\Delta y}$$



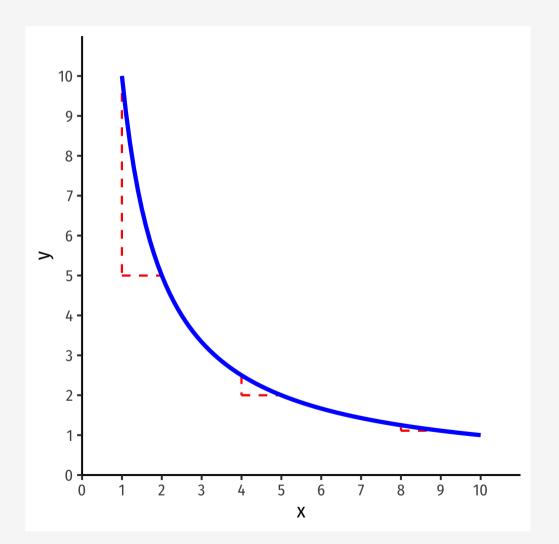


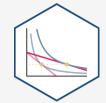
• Marginal utility: change in utility from a marginal increase in consumption

• Math (calculus): "*marginal*" means "*derivative with respect to*"

$$MU_x = \frac{\partial u(x, y)}{\partial x}$$

• I will always derive marginal utility functions for you





MRS and Marginal Utility: Example

Example: For an example utility function

$$u(x,y) = x^2 + y^3$$

- Marginal utility of x: $MU_x = 2x$ Marginal utility of y: $MU_y = 3y^2$
- Again, I will always derive marginal utility functions for you

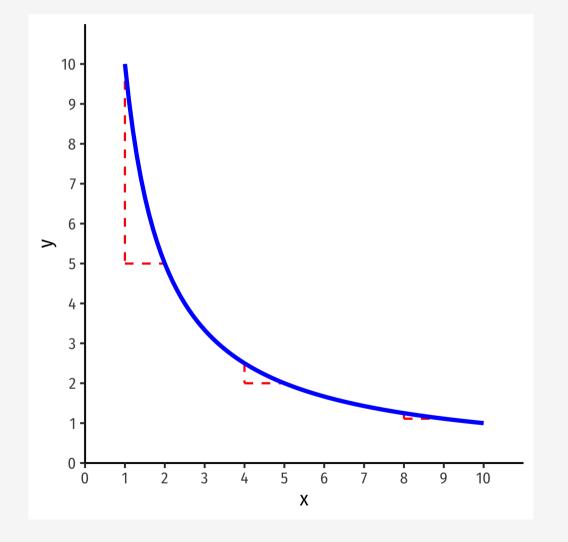
MRS Equation and Marginal Utility

• Relationship between *MU* and *MRS*:

$$\underbrace{\frac{\Delta y}{\Delta x}}_{MRS} = -\frac{MU_x}{MU_y}$$

• See proof in <u>today's class notes</u>

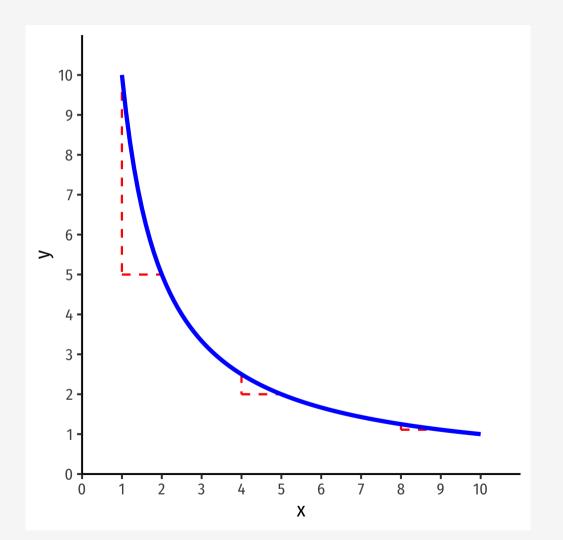
"I am willing to give up $\left(\frac{MU_x}{MU_y}\right)$ units of y to consume 1 more unit of x and stay satisfied."



Important Insights About Value

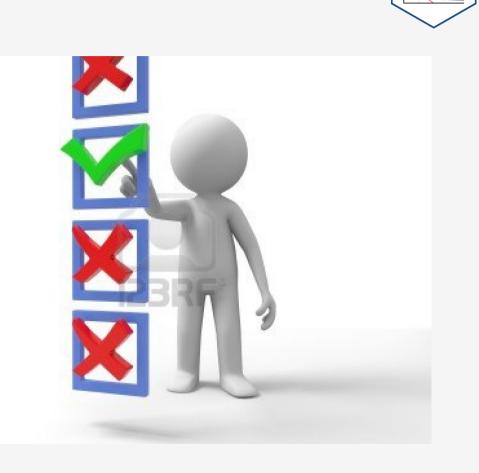
"I am willing to give up $\left(\frac{MU_x}{MU_y}\right)$ units of y to consume 1 more unit of x and stay satisfied."

- We can't measure MU's, but we can measure MRS_{x,y} and infer the ratio of MU's!
 - Example: if $MRS_{x,y} = 5$, a unit of good x gives 5 times the marginal utility of good y at the margin



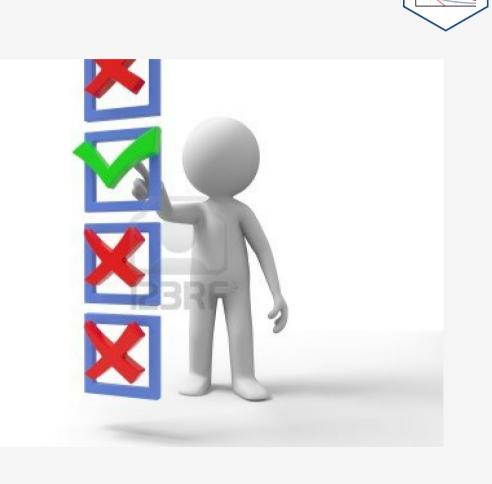
Important Insights About Value

- Value is **subjective**
 - Each of us has our own preferences that determine our ends or objectives
 - Choice is forward looking: a comparison of your expectations about opportunities
- Preferences are not comparable across individuals
 - Only individuals know what they give up at the moment of choice



Important Insights About Value

- Value inherently comes from the fact that we must make tradeoffs
 - Making one choice means *having to* give up pursuing others!
 - The choice we pursue at the moment must be worth the sacrifice of others!
 (i.e. highest marginal utility)



Diminishing Marginal Utility

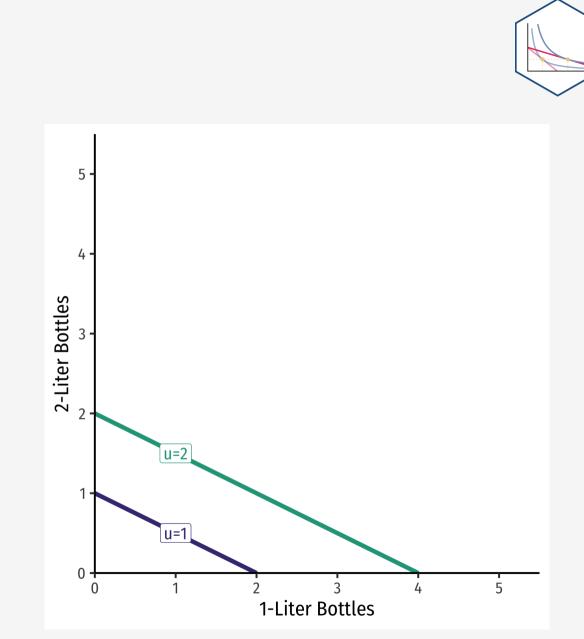
The Law of Diminishing Marginal Utility: each marginal unit of a good consumed tends to provide less marginal utility than the previous unit, all else equal

- As you consume more *x*:
 - $\circ \downarrow MU_x$
 - $\downarrow MRS_{x,y}$: willing to give up *fewer* units of y for x

Special Case: Substitutes

Example: Consider 1-Liter bottles of coke and 2-Liter bottles of coke

- Always willing to substitute between Two
 1-L bottles for One 2-L bottle
- **Perfect substitutes**: goods that can be substituted at same fixed rate and yield same utility
- $MRS_{1L,2L} = -0.5$ (a constant!)

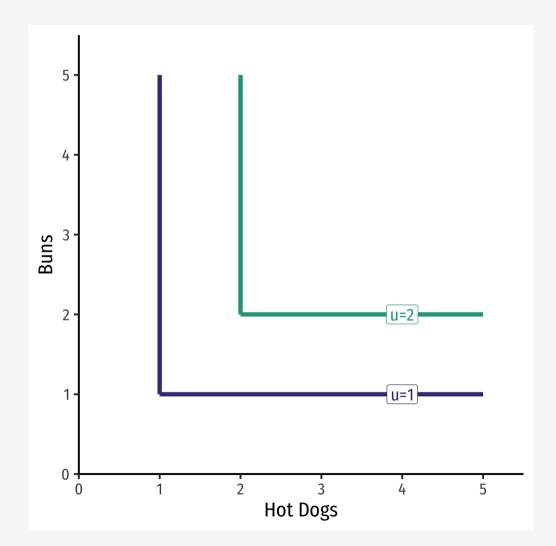


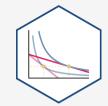
Special Case: Complements

Example: Consider hot dogs and hot dog buns

- Always consume together in fixed proportions (in this case, 1 for 1)
- Perfect complements: goods that can be consumed together in same fixed proportion and yield same utility

•
$$MRS_{H,B} = ?$$



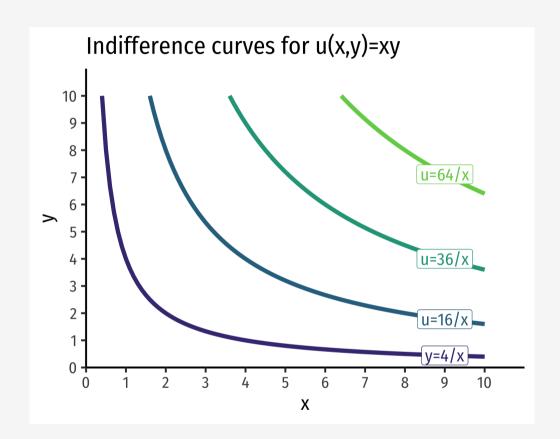


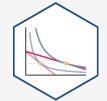
Cobb-Douglas Utility Functions

• A very common functional form in economics is **Cobb-Douglas**

$$u(x, y) = x^a y^b$$

- Extremely useful, you will see it often!
 - Lots of nice, useful properties (we'll see later)
 - See the appendix in <u>today's class</u>
 <u>page</u>





Practice

Example: Suppose you can consume apples (a) and broccoli (b), and earn utility according to:

u(a, b) = 2ab $MU_a = 2b$ $MU_b = 2a$

1. Put a on the horizontal axis and b on the vertical axis. Write an equation for $MRS_{a,b}$.

- 2. Would you prefer a bundle of (1, 4) or (2, 2)?
- 3. Suppose you are currently consuming 1 apple and 4 broccoli. a. How many units of broccoli are you willing to give up to eat 1 more apple and remain indifferent? b. How much *more* utility would you get if you were to eat 1 more apple?
- 4. Repeat question 3, but for when you are consuming 2 of each good.