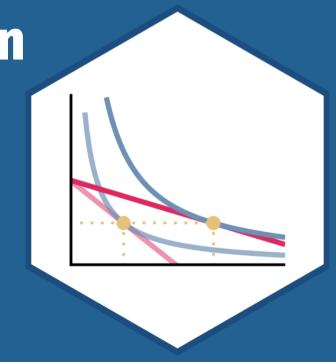
2.5 — Short Run Profit Maximization

ECON 306 • Microeconomic Analysis • Spring 2021 Ryan Safner

Assistant Professor of Economics

- safner@hood.edu
- ryansafner/microS21
- microS21.classes.ryansafner.com



Outline

Revenues

Profits

Comparative Statics

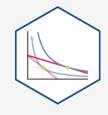
Calculating Profit

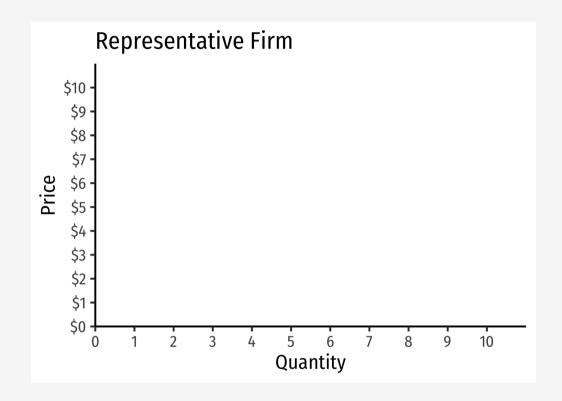
Short-Run Shut-Down Decisions

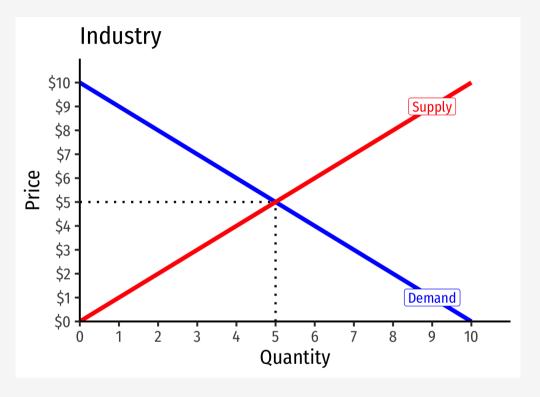
The Firm's Short-Run Supply Decision

Revenues

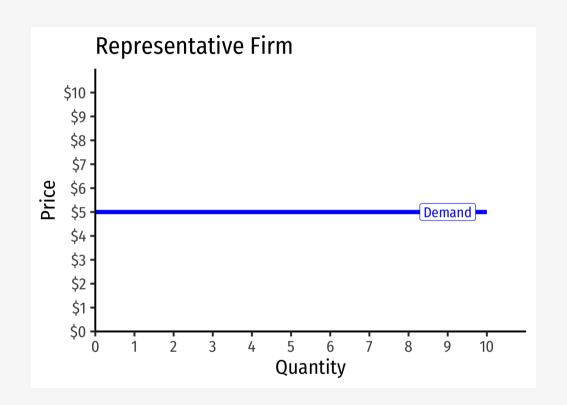
Revenues for Firms in *Competitive* Industries I

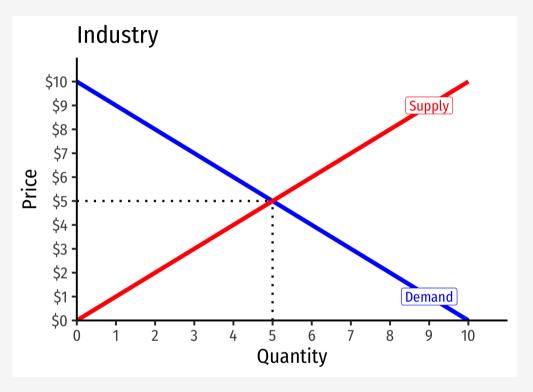






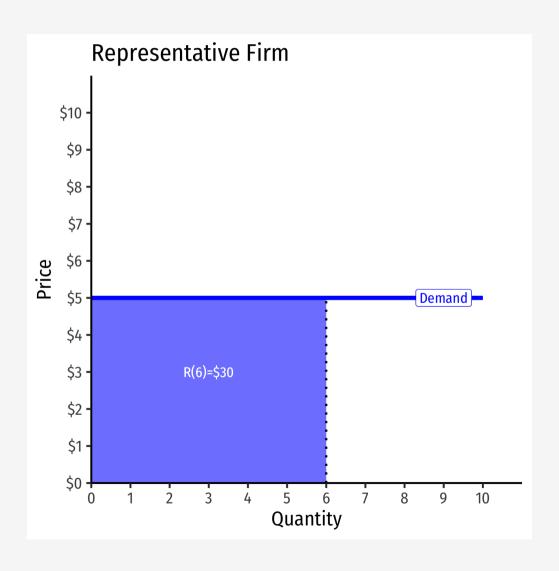
Revenues for Firms in *Competitive* Industries I





- Demand for a firm's product is **perfectly elastic** at the market price
- Where did the supply curve come from? You'll see

Revenues for Firms in *Competitive* Industries II



• Total Revenue R(q) = pq

Average and Marginal Revenues

• Average Revenue: revenue per unit of output

$$AR(q) = \frac{R}{q}$$

- Is always equal to the price! Why?
- Marginal Revenue: change in revenues for each additional unit of output sold:

$$MR(q) = \frac{\Delta R(q)}{\Delta q} \approx \frac{R_2 - R_1}{q_2 - q_1}$$

- Calculus: first derivative of the revenues function
- \circ For a *competitive* firm, MR(q) = p, the price!

Average and Marginal Revenues: Example

Example: A firm sells bushels of wheat in a very competitive market. The current market price is \$10/bushel.

For the 1st bushel sold:

- What is the total revenue?
- What is the average revenue?

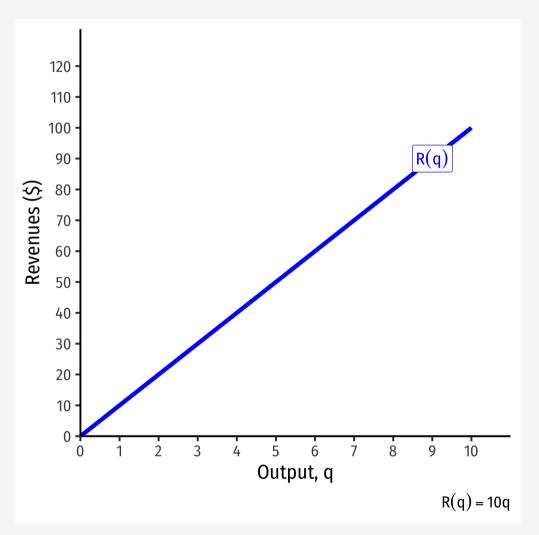
For the 2nd bushel sold:

- What is the total revenue?
- What is the average revenue?
- What is the marginal revenue?

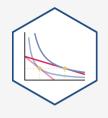
Total Revenue, Example: Visualized



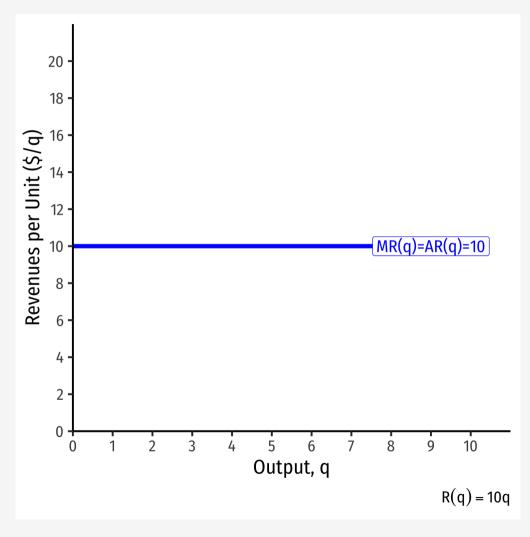
q	R(q)	
0	0	
1	10	
2	20	
3	30	
4	40	
5	50	
6	60	
7	70	
8	80	
9	90	



Average and Marginal Revenue, Example: Visualized



q	R(q)	AR(q)	MR(q)
0	0	_	_
1	10	10	10
2	20	10	10
3	30	10	10
4	40	10	10
5	50	10	10
6	60	10	10
7	70	10	10
8	80	10	10
9	90	10	10



Profits

Recall: The Firm's Two Problems

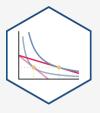
1st Stage: firm's profit maximization problem:

1. Choose: < output >

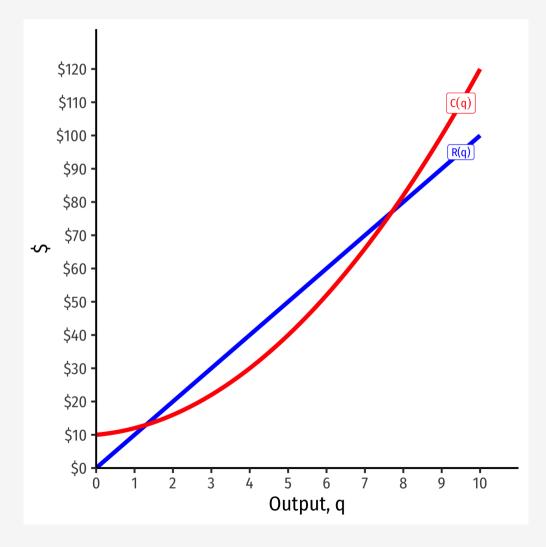
2. In order to maximize: < profits >

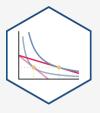
2nd Stage: firm's cost minimization problem:

- 1. Choose: < inputs >
- 2. In order to *minimize*: < cost >
- 3. Subject to: < producing the optimal output >
- Minimizing costs ← maximizing profits

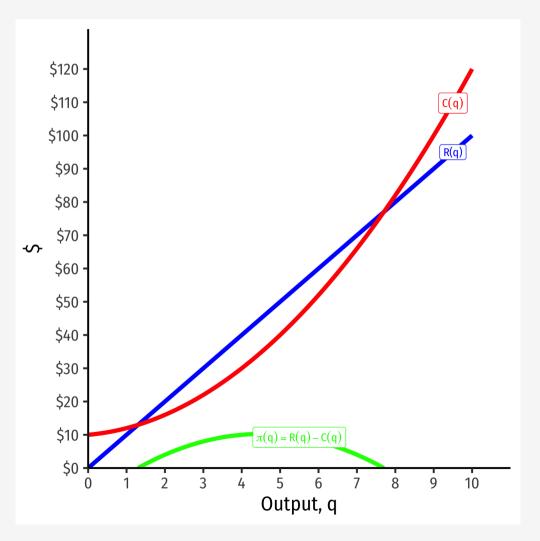


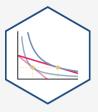
•
$$\pi(q) = R(q) - C(q)$$



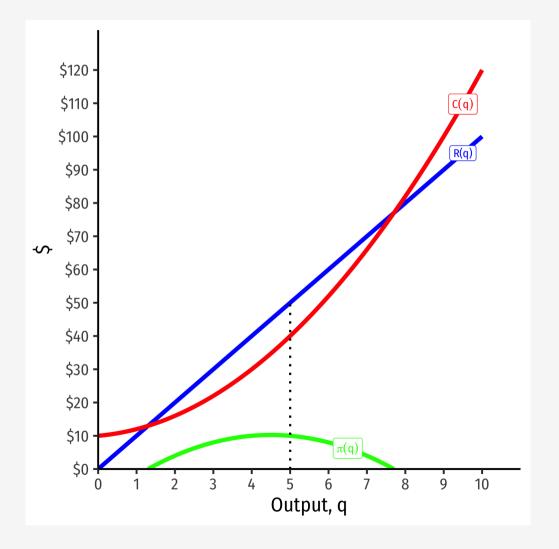


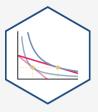
•
$$\pi(q) = R(q) - C(q)$$





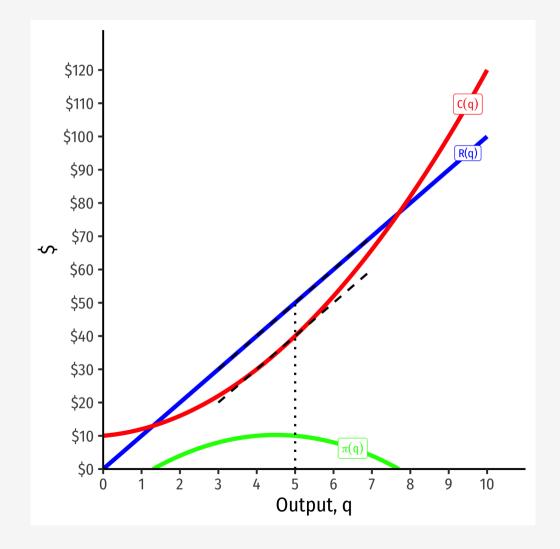
- $\pi(q) = R(q) C(q)$
- Graph: find q^* to max $\pi \implies q^*$ where max distance between R(q) and C(q)

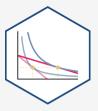




- $\pi(q) = R(q) C(q)$
- Graph: find q^* to max $\pi \implies q^*$ where max distance between R(q) and C(q)
- Slopes must be equal:

$$MR(q) = MC(q)$$

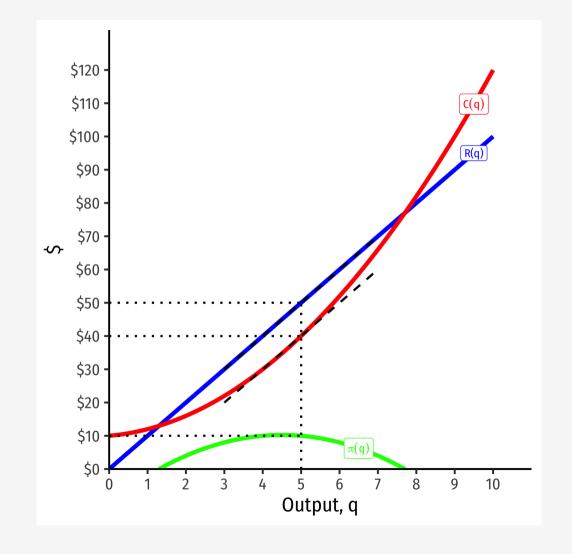




- $\pi(q) = R(q) C(q)$
- Graph: find q^* to max $\pi \implies q^*$ where max distance between R(q) and C(q)
- Slopes must be equal:

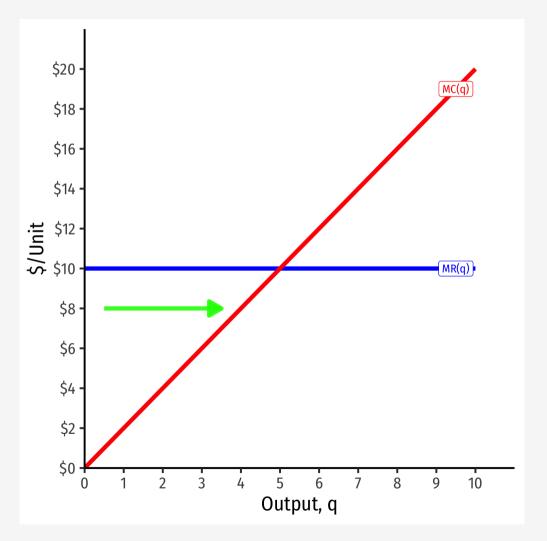
$$MR(q) = MC(q)$$

• At $q^* = 5$: • R(q) = 50• C(q) = 40• $\pi(q) = 10$



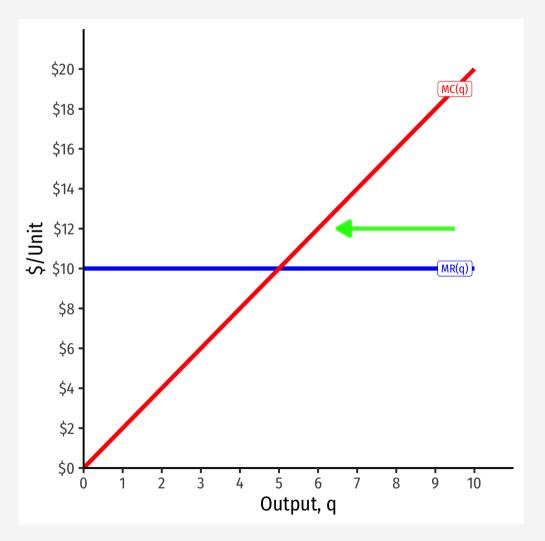
Visualizing Profit Per Unit As MR(q) and MC(q)

• At low output $q < q^*$, can increase π by producing *more*: MR(q) > MC(q)



Visualizing Profit Per Unit As MR(q) and MC(q)

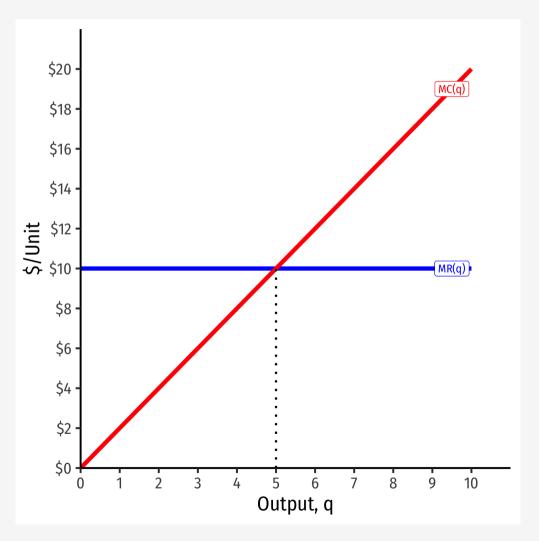
• At high output $q > q^*$, can increase π by producing *less*: MR(q) < MC(q)



Visualizing Profit Per Unit As MR(q) and MC(q)

• π is *maximized* where

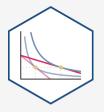
$$MR(q) = MC(q)$$



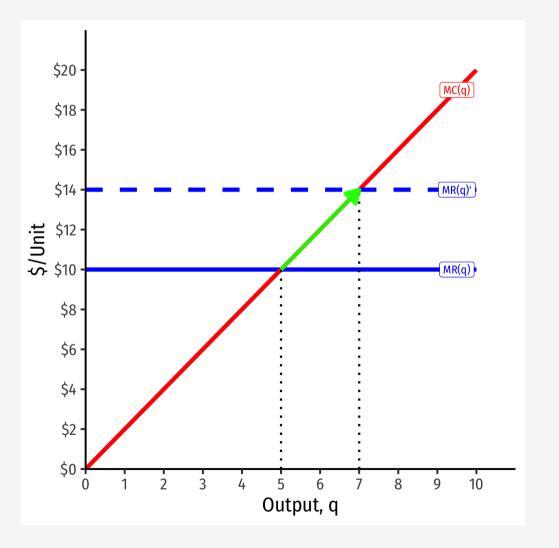


Comparative Statics

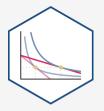
If Market Price Changes I



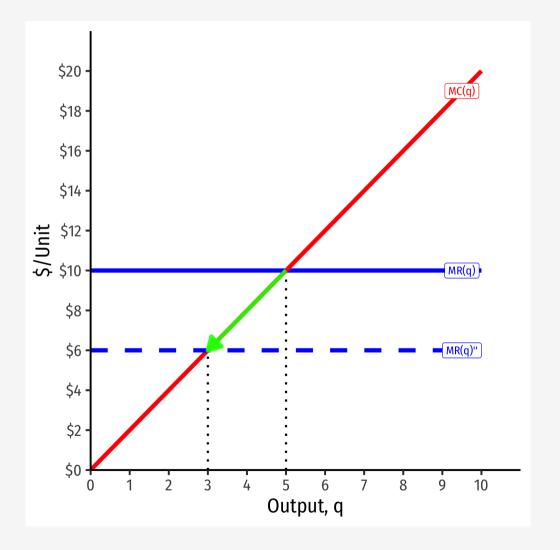
- Suppose the market price *increases*
- Firm (always setting MR = MC) will respond by *producing more*



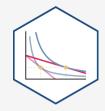
If Market Price Changes II



- Suppose the market price *decreases*
- Firm (always setting MR = MC) will respond by *producing more*



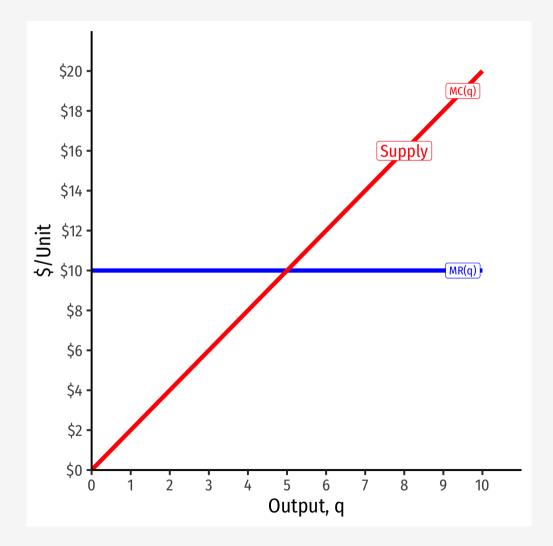
If Market Price Changes II



 The firm's marginal cost curve is its (inverse) supply curve[†]

$$Supply = MC(q)$$

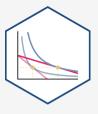
- How it will supply the optimal amount of output in response to the market price
- There is an exception to this! We will see shortly!



^{*}Mostly...there is an exception we will see shortly!

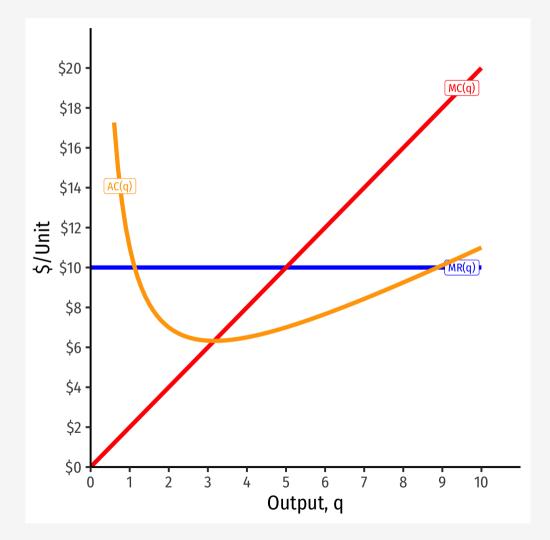


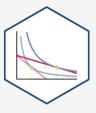
Calculating Profit



• Profit is

$$\pi(q) = R(q) - C(q)$$



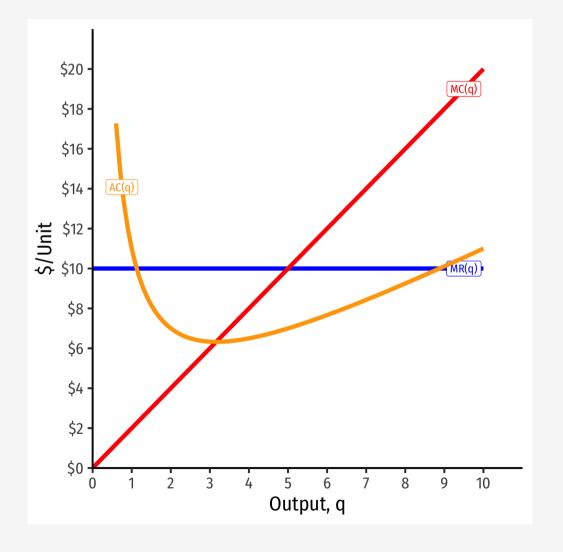


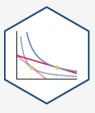
Profit is

$$\pi(q) = R(q) - C(q)$$

• Profit per unit can be calculated as:

$$\frac{\pi(q)}{q} = AR(q) - AC(q)$$
$$= p - AC(q)$$





• Profit is

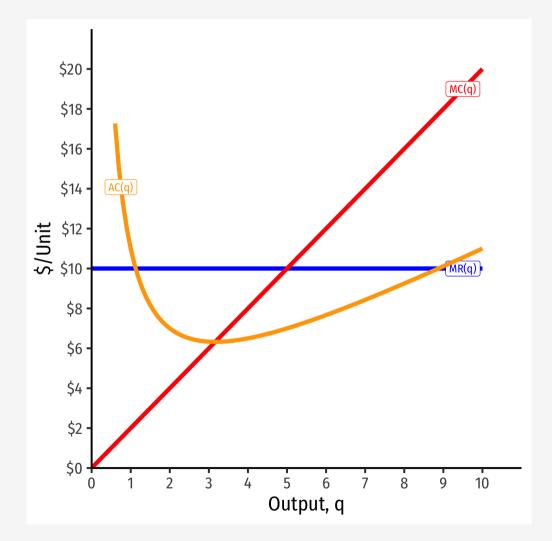
$$\pi(q) = R(q) - C(q)$$

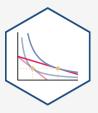
• Profit per unit can be calculated as:

$$\frac{\pi(q)}{q} = AR(q) - AC(q)$$
$$= p - AC(q)$$

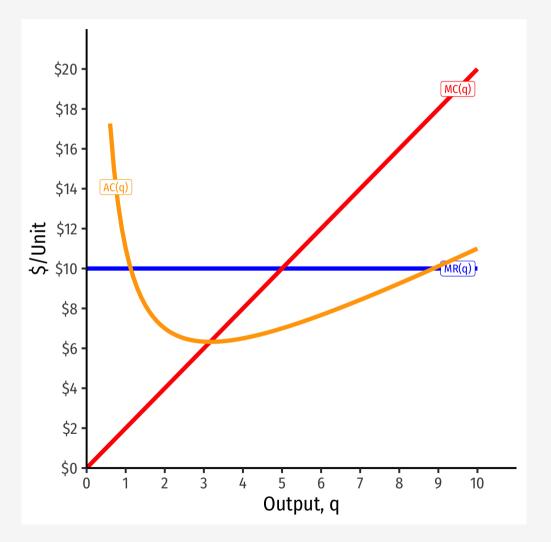
• Multiply by *q* to get total profit:

$$\pi(q) = q \left[p - AC(q) \right]$$

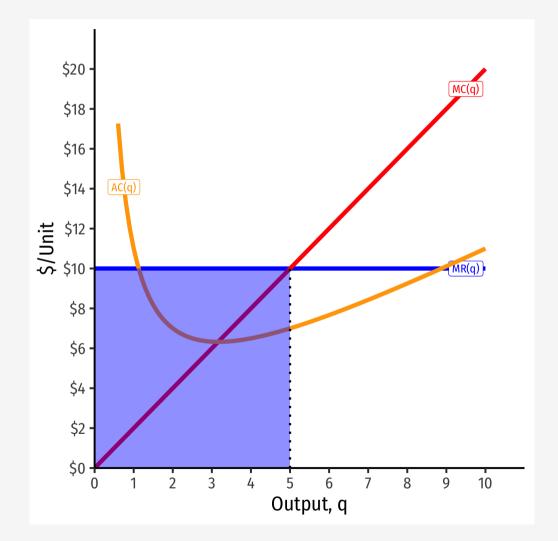


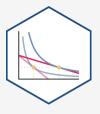


- At market price of p* = \$10
- At q* = 5 (per unit):
- At q* = 5 (totals):

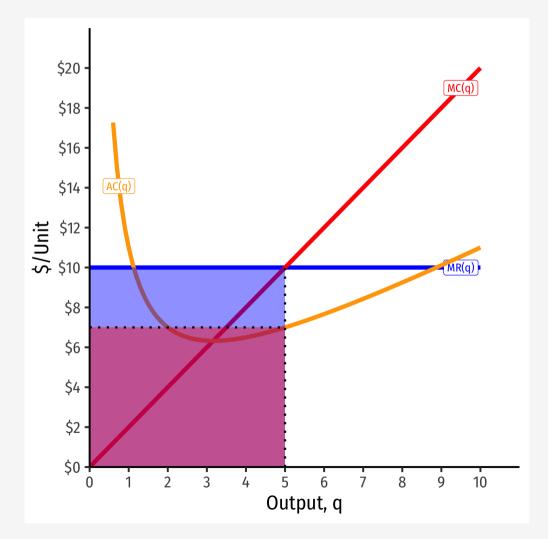


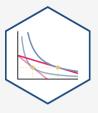
- At market price of p* = \$10
- At q* = 5 (per unit):
 - AR(5) = \$10/unit
- At q* = 5 (totals):
 - \circ R(5) = \$50



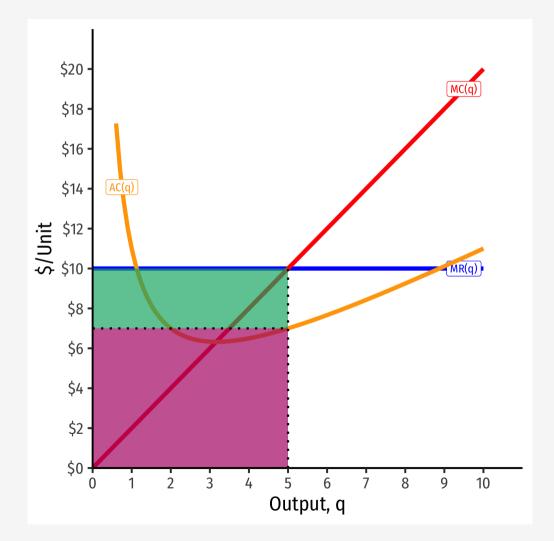


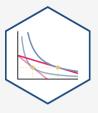
- At market price of p* = \$10
- At q* = 5 (per unit):
 - AR(5) = \$10/unit
 - AC(5) = \$7/unit
- At q* = 5 (totals):
 - \circ R(5) = \$50
 - \circ C(5) = \$35



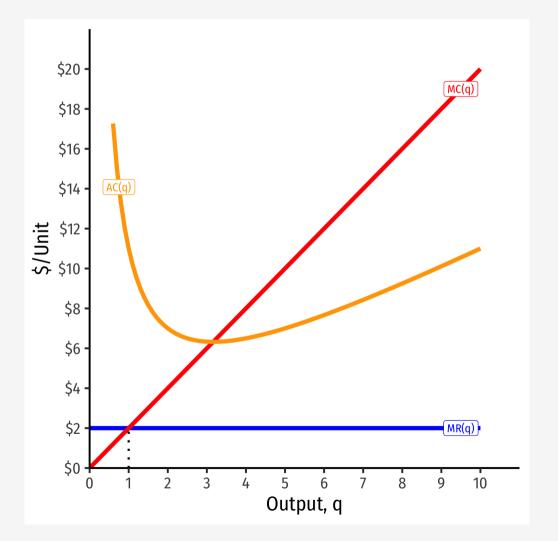


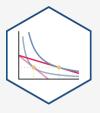
- At market price of p* = \$10
- At q* = 5 (per unit):
 - AR(5) = \$10/unit
 - AC(5) = \$7/unit
 - \circ A π (5) = \$3/unit
- At q* = 5 (totals):
 - \circ R(5) = \$50
 - \circ C(5) = \$35
 - \circ π = \$15



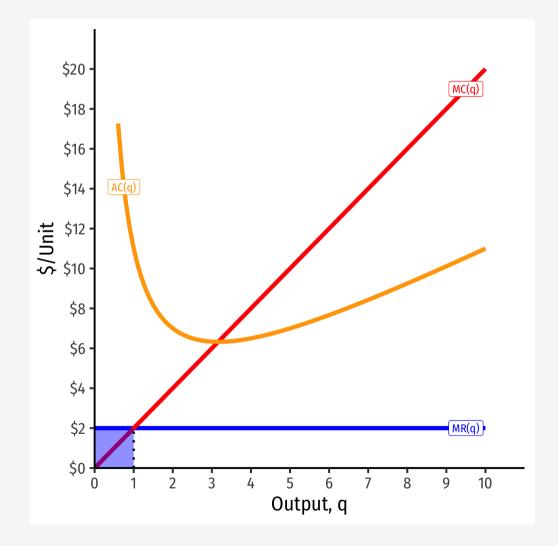


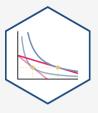
- At market price of p* = \$2
- At q* = 1 (per unit):
- At q* = 1 (totals):



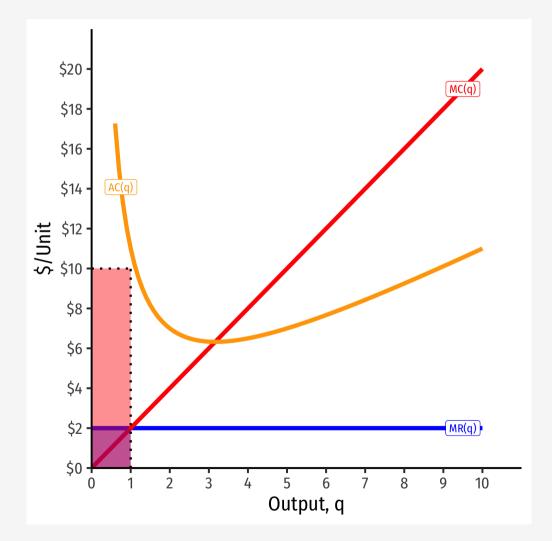


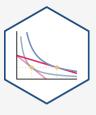
- At market price of p* = \$2
- At q* = 1 (per unit):
 - AR(1) = \$2/unit
- At q* = 1 (totals):
 - o R(1) = \$2



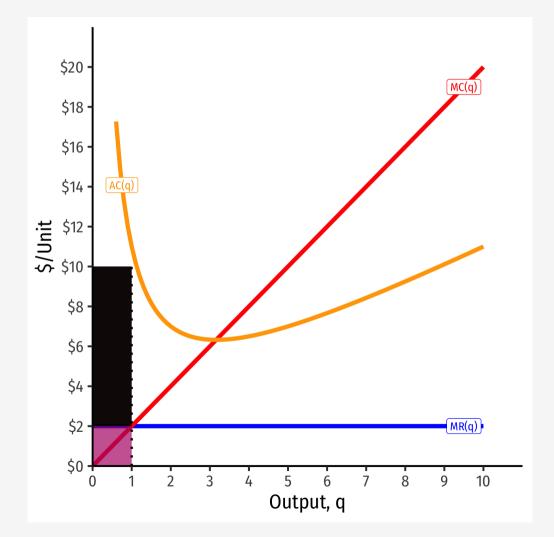


- At market price of p* = \$2
- At q* = 1 (per unit):
 - AR(1) = \$2/unit
 - AC(1) = \$10/unit
- At q* = 1 (totals):
 - o R(1) = \$2
 - o C(1) = \$10



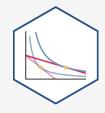


- At market price of p* = \$2
- At q* = 1 (per unit):
 - AR(1) = \$2/unit
 - AC(1) = \$10/unit
 - \circ A π (1) = -\$8/unit
- At q* = 1 (totals):
 - \circ R(1) = \$2
 - \circ C(1) = \$10
 - $\circ \pi(1) = -\$8$



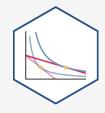


- What if a firm's profits at q^* are **negative** (i.e. it earns **losses**)?
- Should it produce at all?



- Suppose firm chooses to produce **nothing** (q = 0):
- If it has **fixed costs** (f > 0), its profits are:

$$\pi(q) = pq - C(q)$$



- Suppose firm chooses to produce **nothing** (q = 0):
- If it has **fixed costs** (f > 0), its profits are:

$$\pi(q) = pq - C(q)$$

$$\pi(q) = pq - f - VC(q)$$

- Suppose firm chooses to produce **nothing** (q = 0):
- If it has **fixed costs** (f > 0), its profits are:

$$\pi(q) = pq - C(q)$$

$$\pi(q) = pq - f - VC(q)$$

$$\pi(0) = -f$$

• A firm should choose to produce nothing (q = 0) only when:

 π from producing $< \pi$ from not producing

• A firm should choose to produce nothing (q = 0) only when:

$$\pi$$
 from producing $<\pi$ from not producing
$$\pi(q)<-f$$

• A firm should choose to produce nothing (q = 0) only when:

$$\pi$$
 from producing $<\pi$ from not producing
$$\pi(q)<-f$$

$$pq-VC(q)-f<-f$$

• A firm should choose to produce nothing (q = 0) only when:

 π from producing $< \pi$ from not producing $\pi(q) < -f$ pq - VC(q) - f < -f pq - VC(q) < 0

• A firm should choose to produce nothing (q = 0) only when:

$$\pi$$
 from producing $< \pi$ from not producing
$$\pi(q) < -f$$

$$pq - VC(q) - f < -f$$

$$pq - VC(q) < 0$$

$$pq < VC(q)$$

• A firm should choose to produce nothing (q = 0) only when:

$$\pi$$
 from producing $< \pi$ from not producing
$$\pi(q) < -f$$

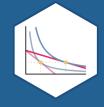
$$pq - VC(q) - f < -f$$

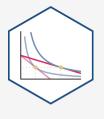
$$pq - VC(q) < 0$$

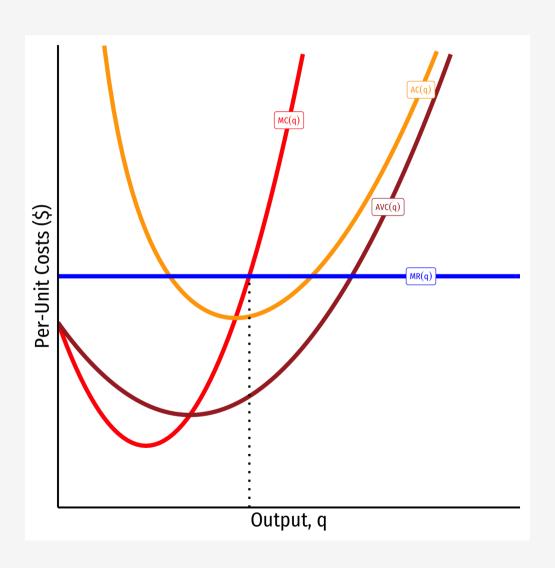
$$pq < VC(q)$$

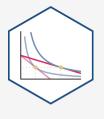
$$p < AVC(q)$$

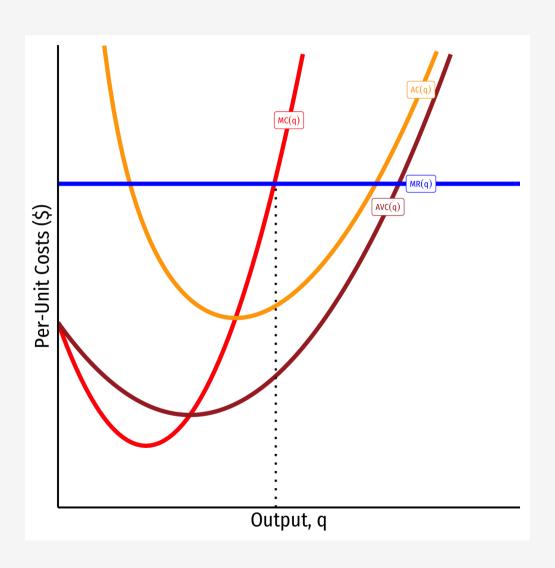
• Shut down price: firm will shut down production in the short run when p < AVC(q)

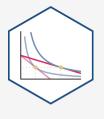


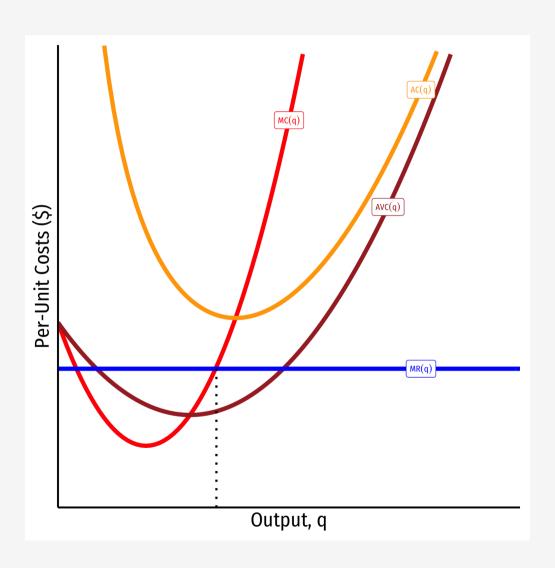


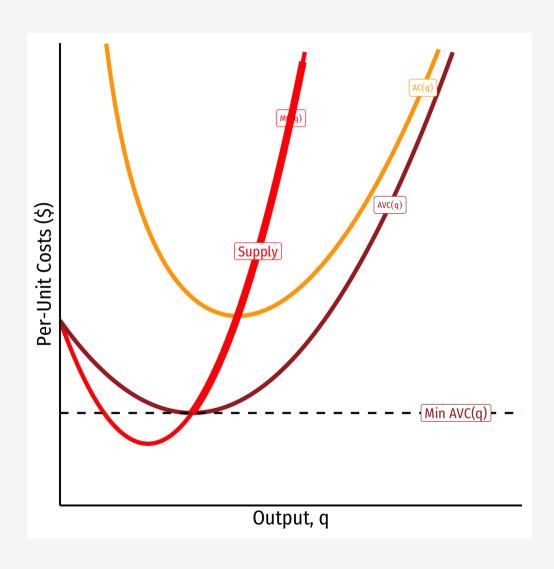


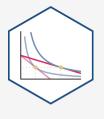


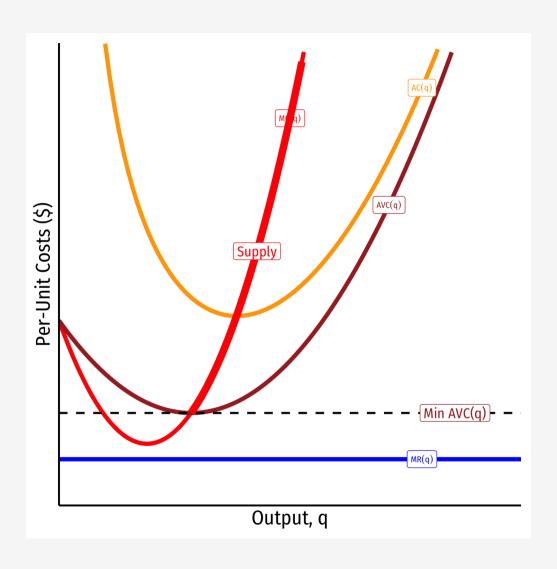


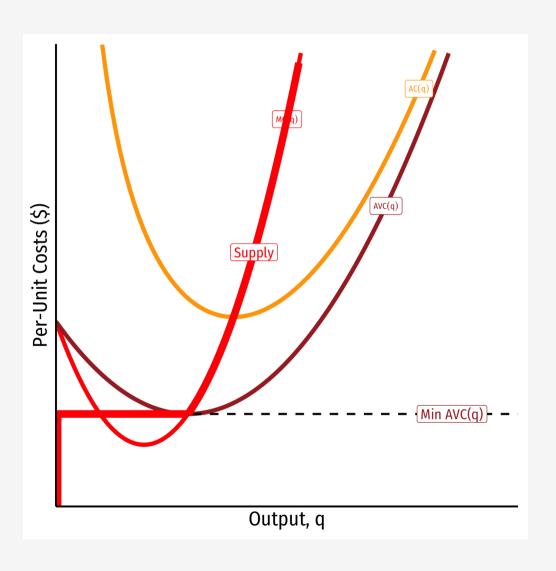






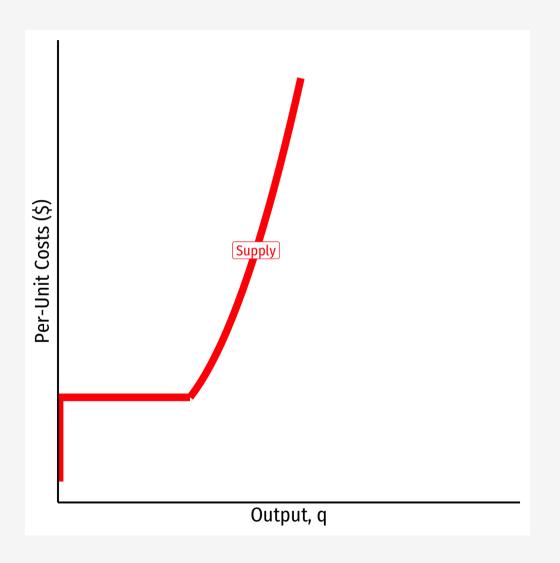






Firm's short run (inverse) supply:

$$\begin{cases} p = MC(q) & \text{if } p \ge AVC \\ q = 0 & \text{If } p < AVC \end{cases}$$



Firm's short run (inverse) supply:

$$\begin{cases} p = MC(q) & \text{if } p \ge AVC \\ q = 0 & \text{If } p < AVC \end{cases}$$

Summary:

- 1. Choose q^* such that MR(q) = MC(q)
- 2. Profit $\pi = q[p AC(q)]$
- 3. Shut down if p < AVC(q)

Firm's short run (inverse) supply:

$$\begin{cases} p = MC(q) & \text{if } p \ge AVC \\ q = 0 & \text{If } p < AVC \end{cases}$$

Choosing the Profit-Maximizing Output q^* : Example

Example: Bob's barbershop gives haircuts in a very competitive market, where barbers cannot differentiate their haircuts. The current market price of a haircut is \$15. Bob's daily short run costs are given by:

$$C(q) = 0.5q^2$$
$$MC(q) = q$$

- 1. How many haircuts per day would maximize Bob's profits?
- 2. How much profit will Bob earn per day?
- 3. Find Bob's shut down price.